
Polyspace® Code Prover™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover™ Release Notes
© COPYRIGHT 2013–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

R2017b

Verification Setup . 1-2

Green Hills Compiler Support: Set up Polyspace analysis easily
for code compiled with Green Hills Compiler 1-2

OSEK Multitasking Support: Detect the multitasking
configuration for your OSEK application automatically . . . 1-2

Polyspace API in MATLAB: Configure analysis, run analysis,
and read analysis results with a single MATLAB object . . . 1-3

Compiler-Specific Keywords: Nonstandard compiler-specific
keywords are only supported when you specify compiler . . . 1-5

POSIX and BSD Standards: Use functions from these
standards without additional setup 1-6

Changes in analysis options and binaries 1-6

Verification Results . 1-11

Stack Size Computation: Determine maximum stack usage by a
C program and individual functions 1-11

MISRA C:2012 Directive 1.1: Detect instances of
implementation-specific behavior in your code 1-11

CERT C Support: Identify CERT C violations using run-time
error checkers . 1-12

Changes to coding rule checking . 1-12

Reviewing Results . 1-14

Run-Time Error Cause: Navigate to and view the cause of red
nonterminating loops or function calls 1-14

Results Review Workflow: Sort and filter results by
subtype . 1-15

Result Review Workflow: Hide results that you reviewed once
and justified through source code annotations 1-16

iii

Contents

Code Annotations: Justify results or define your own format
with a new annotation format . 1-18

MISRA Comments and Code Annotations: Import your existing
MISRA C:2004 justifications to MISRA C:2012 results . . . 1-18

Variable Relationships in Tooltips: Check if variables in
operation are related from previous operation 1-20

Result Status: Assign statuses that directly correspond to
stages of development workflow . 1-20

Function Call Hierarchy: View and navigate to function callers
and callees by clicking function name 1-22

R2017a

Verification Setup . 2-2

Unified User Interface: Create and maintain a single Polyspace
project for Bug Finder and Code Prover analysis 2-2

Improved Speed and Precision: Run analysis faster and receive
fewer orange checks as compared to previous releases 2-6

TASKING Compiler Support: Set up Polyspace analysis easily
for code compiled with Altium TASKING compiler 2-6

Updated Visual C++ Support: Set up Polyspace analysis easily
for code compiled with Microsoft Visual C++ 2015
compiler . 2-7

Autodetection of Concurrency Primitives: Multitasking model
detected from Windows or μC/OS II
multithreading functions . 2-7

Manual Multitasking Setup: Functions beginning and ending
critical sections do not need to be defined 2-8

Manual Multitasking Setup: main Function Not Required . . . 2-8
Specifying Function Names for Options: Choose from

prepopulated list in user interface instead of entering
manually . 2-8

Polyspace API in MATLAB: Create MATLAB objects from
Polyspace projects to run analysis . 2-9

Improved support for user implementations of standard library
functions . 2-10

Improvement in automatic project creation from build
systems . 2-11

Changes in analysis options and binaries 2-11

iv Contents

Changes in MATLAB options object 2-15
Change in temporary folder location 2-16

Verification Results . 2-18

Integers in Floating Point: See improved analysis precision for
floating point variables that always take integer values . . 2-18

New Code Metrics: See number of lines in header files and
number of local variables per function 2-18

Checks Green by Definition: Distinguish operations that are
safe by definition from operations that are proven safe . . . 2-19

Function Pointer Signature Mismatch: View orange checks
instead of red when the mismatch cannot be proven 2-20

Structures with Volatile Fields: See improved analysis precision
and apply constraints if necessary 2-20

Changes to coding rule checking . 2-21

Reviewing Results . 2-23

Easier Review: View verification assumptions, see unreachable
and aliased function calls in call graph 2-23

Folder Names in Results: Filter or group analysis results by
source folder names . 2-24

Code to Model Traceability: Switch easily between identifiers in
generated code and corresponding blocks in model 2-25

Polyspace API in MATLAB: Read Polyspace analysis results
from MATLAB . 2-26

R2016b

Verification Setup . 3-2

Diab Compiler Support: Set up Polyspace verification easily for
code compiled with Wind River Diab compiler 3-2

Multitasking Code Verification Setup: Specify cyclic tasks and
nonpreemptable interrupts directly as verification
options . 3-2

Improved source and include folder management 3-2
Writable Examples: Modify example projects and restore

original versions . 3-3

v

Run verification on .psprj file from the command line 3-3
Polyspace API in MATLAB: Configure and run Polyspace using

MATLAB objects . 3-4
Configuration Parameters Help: View descriptions of Polyspace

options in Simulink configuration parameters 3-5
Eclipse Build Support: Set up Polyspace verification from

Eclipse build command . 3-5
Visual Studio 2010 add-in support to be removed from

installation . 3-5
Support for Rhapsody 8.1 . 3-6
DOS Mode Warning on Linux: Compilation warning for DOS

inconsistencies . 3-6
Faster Restart for Remote Verification: Reuse compilation

results from a previous analysis . 3-7
Internal Memory Limits Removed: Expect fewer analysis

failures from memory-intensive processes 3-7
Support for local threads . 3-7
Changes in Target & Compiler analysis options 3-8
Changes in analysis options and binaries 3-9

Verification Results . 3-14

Subnormal Float Detection: Identify loss of precision from
operations that lead to subnormal results 3-14

Local Variable Size Estimation: Find total size of local variables
in a function . 3-14

Changes to coding rule checking . 3-15
Metrics for C++ Templates: View code complexity metrics for

instances of C++ templates . 3-16
Mutual Exclusion Support: View precise ranges for shared

variables protected by critical sections and temporally
exclusive tasks . 3-17

Improved Embedded Coder Support: View more precise results
when generated code uses lookup tables or large data
structures . 3-19

Precise Buffer Manipulation Functions: View more precise
results on complete copying of structures 3-20

Assumption for Stubbed Pointers: Review fewer warnings from
pointers coming from external code 3-20

Assumption for Structures with Volatile Fields: Review fewer
warnings from partly volatile structures 3-21

Expected Infinite Loop Detection: Avoid justifying run-time
errors on infinite loops that you introduce deliberately . . . 3-21

vi Contents

Mapping to Standard Functions: View precise results by
mapping imprecisely analyzed functions to corresponding
standard functions . 3-22

Reviewing Results . 3-24

Interactive Graphical Display: Click graphs on Dashboard to
filter results . 3-24

Float Range Display: View float variables with narrow ranges
more clearly . 3-24

Event History for Coding Rules: Navigate easily between two
locations in code that together cause a rule violation 3-25

Subcheck Display for Standard Library Routines: Determine
easily from visual inspection which subcheck failed 3-25

Results from Macros: Coding rule violations highlighted on
macro definitions instead of macro instances 3-26

Verification Objectives in Eclipse: Create review scopes to focus
your review . 3-26

Filtered Report: Reuse result filters for generated report . . . 3-27
Results Export: Export results to text file for computing graphs

and statistics . 3-27
Coding Rule Graphs in Report: View breakdown of coding rules

violations by rule number and file 3-27
Constraints in Report: Add comments about external

constraints and view comments in report 3-28
English Reports in Non-English Locales: Generate English

reports on operating systems with a different language . . 3-29
Improved PDF report generation . 3-29
Change in report template location . 3-29
Changes in Polyspace User Interface 3-29

R2016a

Verification Setup . 4-2

Files to Review: Generate results for only specified files and
folders . 4-2

Faster MISRA Rule Checking: Check coding rules more quickly
and efficiently . 4-2

vii

S-Function Analysis: Launch analysis of S-Function code from
Simulink . 4-3

Polyspace Metrics Tomcat Upgrade: Use upgraded default
Tomcat server or custom Tomcat version 4-3

Project Language Flexibility: Change your project language at
any time . 4-4

External Constraint on Pointers: Specify certain initialization
with full range for pointer arguments and return values of
stubbed functions . 4-4

Source Code Search: Search large applications more
quickly . 4-6

Polyspace TargetLink plug-in supports data from
structures . 4-6

Polyspace Eclipse plug-in results location moved 4-6
Improvements in automatic project creation from build

command . 4-6
Improvements in checking of previously supported MISRA C

rules . 4-7
Variables with constraints not counted as orange sources 4-9
Changes in analysis options . 4-9

Verification Results . 4-13

Floating-Point Support: Propagate ranges more precisely for
long double variables and enable verification mode to
incorporate infinities and NaNs . 4-13

Absolute address usage valid by default 4-15
Run-time checks renamed . 4-16

Reviewing Results . 4-17

Autocompletion for Review Comments: Partially type previous
comment to select complete comment 4-17

Default Layouts: Switch easily between project setup and
results review in user interface . 4-17

Persistent Filter States: Apply filters once and view filtered
results across multiple runs . 4-17

Updated Polyspace Metrics Interface: View summary of project
and metrics . 4-18

Improved Result Display for File-by-File Verification: View
combined summary of results for all files in user
interface . 4-18

Simplified Variable Access: View task names instead of
aliases . 4-19

viii Contents

R2015b

Verification Setup . 5-2

Option to Suppress Non-initialization Checks: Customize
verification by suppressing non-initialization checks 5-2

Autodetection of Multitasking Primitives: Analyze source code
with multitasking primitives from POSIX or VxWorks
without manual setup . 5-2

Microsoft Visual C++ 2013 Support: Analyze code developed in
Microsoft Visual C++ 2013 . 5-3

GNU 4.9 and Clang 3.5 Support: Analyze code compiled with
GCC 4.9 or Clang 3.5 . 5-3

Improvements in automatic project creation from build
command . 5-3

Start Page: Get quickly familiar with Polyspace Code
Prover . 5-5

Saved Layouts: Save your preferred layouts of the Polyspace
user interface . 5-5

Renaming of labels in Polyspace user interface 5-6
Including options multiple times . 5-6
Updated Support for TargetLink . 5-7
Improved handling of __declspec . 5-8
Changes in analysis options . 5-8
Binaries removed . 5-14
Support for Visual Studio 2008 to be removed 5-14
Import Visual Studio project removed 5-15

Verification Results . 5-16

Improved Concurrency Detection: View more precise sharing
and protection results based on dynamic information such as
data flow in branching statements and protection on
individual fields of a structure . 5-16

Additional MISRA C:2012 Support: Detect violations of all
MISRA C:2012 rules except rules 22.x 5-19

Improved precision for mathematical functions 5-19
Improvements in checking of previously supported MISRA C

rules . 5-19
Change in Correctness Condition Check 5-22

Reviewing Results . 5-23

ix

Improved Review Capability: View result details and add
review comments in one window . 5-23

Enhanced Review Scope: Filter coding rule violations from
display in one click . 5-23

Additional Call Graph Showing Task Creation 5-24
Improvements in Polyspace Metrics workflow 5-24
Improvements in Polyspace Plugin for Eclipse 5-25
Improvements in Report Templates 5-25
Configuration Associated with Result Not Opened by

Default . 5-26
XML and RTF report formats removed 5-26

R2015a

Verification Setup . 6-2

Simplified workflow for project setup and results review with a
unified user interface . 6-2

Improvements in search capability in the user interface 6-4
Support for GCC 4.8 . 6-4
Polyspace plug-in for Simulink improvements 6-4
Polyspace binaries being removed . 6-5
Import Visual Studio project being removed 6-6

Verification Results . 6-7

Detection of stack pointer dereference outside scope 6-7
Isolated ellipsis for variable number of function arguments

supported . 6-8
Improvement in pointer comparisons 6-8
Improvements in coding rules checking 6-10

Reviewing Results . 6-13

Context-sensitive help for code complexity metrics, MISRA-C:
2012, and custom coding rules . 6-13

Review of code complexity metrics and global variable usage in
user interface . 6-13

Review of latest results compared to the last run 6-15

x Contents

Guidance for reviewing Polyspace Code Prover checks in C
code . 6-15

Simplified results infrastructure . 6-16

R2014b

Verification Setup . 7-2

Improved verification speed . 7-2
Support for Mac OS . 7-2
Support for C++11 . 7-3
Code Editor for editing source files in Polyspace user

interface . 7-3
Local file-by-file verification . 7-3
Simulink plug-in support for custom project files 7-4
TargetLink support updated . 7-4
AUTOSAR support added . 7-4
Default verification level changed . 7-5
Default mode changed for C++ code verification in user

interface . 7-5
Improved global menu in user interface 7-6
Improved Project Manager perspective 7-7
Changed analysis options . 7-8
Remote launcher and queue manager renamed 7-8
Polyspace binaries being removed . 7-9
Import Visual Studio project being removed 7-9

Verification Results . 7-10

Support for MISRA C:2012 . 7-10
Improved verification precision for non-initialized

variables . 7-10
New checks for functions not called . 7-13
Improved precision level . 7-14

Reviewing Results . 7-15

Context-sensitive help for verification options and checks . . . 7-15
Updated Software Quality Objectives 7-15
Improved Results Manager perspective 7-15

xi

Error mode removed from coding rules checking 7-17

R2014a

Verification Setup . 8-2

Automatic project setup from build systems 8-2
Support for GNU 4.7 and Microsoft Visual Studio C++ 2012

dialects . 8-2
Documentation in Japanese . 8-3
Preferences file moved . 8-3
Support for batch analysis security levels 8-3
Interactive mode for remote verification 8-3
Default text editor . 8-4
Support for Windows 8 and Windows Server 2012 8-4
Check model configuration automatically before analysis 8-4
Function replacement in Simulink plug-in 8-5
Polyspace binaries being removed . 8-5

Verification Results . 8-7

Support for additional Coding Rules (MISRA C:2004 Rule 18.2,
MISRA C++ Rule 5-0-11) . 8-7

Improvement of floating point precision 8-7

Reviewing Results . 8-8

Results folder appearance in Project Browser 8-8
Results Manager improvements . 8-9
Simplification of coding rules checking 8-11
Additional back-to-model support for Simulink plug-in 8-12

R2013b

Verification Results . 9-2

xii Contents

Proven absence of certain run-time errors in C and C++
code . 9-2

Identification of variables exceeding specified range limits . . . 9-2
Graphical display of variable reads and writes 9-2
Calculation of range information for variables, function

parameters and return values . 9-3

Reviewing Results . 9-4

Color-coding of run-time errors directly in code 9-4
Quality metrics for tracking conformance to software quality

objectives . 9-4
Web-based dashboard providing code metrics and quality

status . 9-5
Guided review-checking process for classifying results and run-

time error status . 9-5
Comparison with R2013a Polyspace products 9-6

xiii

R2017b

Version: 9.8

New Features

Bug Fixes

Compatibility Considerations

1

Verification Setup

Green Hills Compiler Support: Set up Polyspace analysis easily for
code compiled with Green Hills Compiler

Summary: If you build your source code with the Green Hills® compiler, in R2017b, you
can specify the compiler name for your Polyspace analysis. The analysis can interpret
macros that are implicitly defined by the compiler and compiler-specific language
extensions such as keywords and pragmas.

You can specify these target processors directly: arm64, arm, i386, x86_64, powerpc,
powerpc64, rh850 or tricore. See Green Hills Compiler (-compiler
greenhills).

Benefits: You can now set up a Polyspace project without knowing the internal workings
of your Green Hills compiler. If your code compiles with your compiler, it will compile
with Polyspace in most cases without requiring additional setup. Previously, you had to
explicitly define macros that were implicitly defined by the compiler and remove
unknown language extensions from your preprocessed code.

OSEK Multitasking Support: Detect the multitasking configuration for
your OSEK application automatically

Summary: In R2017b, you can provide an OIL file that Polyspace parses to detect the
multitasking configuration for your OSEK application. Polyspace can interpret the OIL
file definitions to set up your concurrency model.

R2017b

1-2

For more information, see OSEK multitasking configuration (-osek-
multitasking).

Benefits: You no longer need to configure multitasking manually to analyze your OSEK
application. Polyspace detects the tasks, interrupts, and critical sections of your model.

Polyspace API in MATLAB: Configure analysis, run analysis, and read
analysis results with a single MATLAB object

Summary: In R2017b, you can use a single MATLAB® object for the entire Polyspace
analysis. The analysis has two subobjects, one for configuring the analysis and another
for reading the results.

obj = polyspace.Project

% Configure analysis
obj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
obj.Configuration.TargetCompiler.Compiler = 'gnu4.9';
obj.Configuration.ResultsDir = fullfile(pwd,'results');
obj.Configuration.CodeProverVerification.MainGenerator = true;

 Verification Setup

1-3

% Run analysis
cpStatus = obj.run('codeProver');

% Read results
cpSummary = obj.Results.getSummary();

For more information, see polyspace.Project.

Benefits: You need fewer variables for the Polyspace analysis. You can also use the
same object for reading both Bug Finder and Code Prover results.

Additional Considerations

Are the pre-R2017b ways of scripting a Polyspace analysis still supported?

The objects polyspace.Options, polyspace.BugFinderResults and
polyspace.CodeProverResults are still supported. For easier scripting, it is
recommended that you make the following replacements:

• To configure analysis, instead of the polyspace.Options object, use the
Configuration subobject of the polyspace.Project object.

For instance, instead of:

opts = polyspace.Options

opts.ResultsDir = fullfile(pwd,'results');

Use:

obj = polyspace.Project

obj.Configuration.ResultsDir = fullfile(pwd,'results');
• To read results, instead of the polyspace.BugFinderResults and

polyspace.CodeProverResults objects, use the Results subobject of the
polyspace.Project object.

For instance, instead of:

resultsFolder = fullfile(pwd,'results');

opts = polyspace.Options;

R2017b

1-4

opts.Sources = {fullfile(matlabroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
opts.CodeProverVerification.MainGenerator = true;
opts.ResultsDir = resultsFolder;

polyspaceCodeProver(opts);

resObj = polyspace.CodeProverResults(resultsFolder);
resSummary = resObj.getSummary();

Use:

resultsFolder = fullfile(pwd,'results');

obj = polyspace.Project;

obj.Configuration.Sources = {fullfile(matlabroot, 'polyspace', 'examples',...
 'cxx', 'Code_Prover_Example', 'sources', 'single_file_analysis.c')};
obj.Configuration.CodeProverVerification.MainGenerator = true;
obj.Configuration.ResultsDir = resultsFolder;

cpStatus = obj.run('codeProver');

resSummary = obj.Results.getSummary();

Compiler-Specific Keywords: Nonstandard compiler-specific keywords
are only supported when you specify compiler

Summary: In R2017b, compiler-specific keywords are enabled only when you specify a
supporting compiler. For instance, far is a keyword for certain compilers but not a
keyword for others.

Benefits: When configuring your Polyspace project, it is sufficient to specify your
compiler. Previously, certain keywords were disabled irrespective of your compiler choice.
If your compiler supported those keywords, you had to explicitly enable them.

Compatibility Considerations

In existing projects that use the compiler option none (now generic), you can see
compilation errors. Previously, certain nonstandard keywords such as data were

 Verification Setup

1-5

removed during preprocessing because they were not relevant for the analysis. This
syntax did not cause compilation errors.

data int tab[10];

Now, the nonstandard keywords are recognized based only on your choice of compiler. If
you use a generic compiler, the analysis does not recognize the nonstandard keywords as
keywords and does not remove them during preprocessing. For instance, the preceding
syntax causes compilation errors. For workarounds, see “Errors Related to Generic
Compiler”.

POSIX and BSD Standards: Use functions from these standards
without additional setup

Summary: In R2017b, you can run analysis on code containing POSIX or BSD-specific
functions without additional setup, for instance, defining macros such as
_POSIX_SOURCE. As an example, you can analyze code that uses functions from
unistd.h out of the box. You do not have to specify the location of unistd.h or perform
additional configuration.

Benefits: You can quickly run analysis on code that uses functions specific to POSIX or
BSD. If you do not provide the headers, Polyspace uses its own implementation of the
functions for analysis.

Changes in analysis options and binaries

In R2017b, the following options have been added, changed, or removed.

R2017b

1-6

New Options

Option Description
OSEK multitasking configuration (-osek-
multitasking)

See OSEK
Multitasking Support
release note.

-xml-annotations-description See Code Annotations
release note.

Compiler options:

• Management of size_t (-size-t-type-is)
• Management of wchar_t (-wchar-t-type-is)

Replaces previous
options related to
size_t and
wchar_t.

 Verification Setup

1-7

Updated Options

Option Change
Compiler (-compiler) • Option value none

changed to
generic.

• New value
greenhills
added. See Green
Hills Compiler
Support.

• Option value iso
removed. Use
generic instead.

• Option values
visual, visual6,
visual7.0,
visual7.1,
visual8 and
visual10
removed. Use
visual10.0
instead.

• Option value gnu
removed. Use
gnu3.4 instead.

Target processor type (-target) Target powerpc64
added for Diab
compiler. See Diab
Compiler (-
compiler diab).

Options related to packing of data structures:

• Ignore pragma pack directives (-ignore-pragma-
pack)

• Pack alignment value (-pack-alignment-value)

Available for all
compilers.

R2017b

1-8

Option Change
Enum type definition (-enum-type-definition) Option value

defined-by-
standard changed to
defined-by-
compiler.

-asm-begin and -asm-end Available for all
compilers.

Removed Options

Option Status More Information
Management of 'for loop'
index scope (-for-loop-
index-scope)

Warning Your choice of compilers determines the
specification of for loop index variables.

If you specify an older version of the
Microsoft® Visual C++® compiler such
as visual6, visual7.0 or visual7.1,
the analysis considers that a for loop
index is visible outside the loop.
Otherwise, the analysis considers that
the index is visible only inside the for
loop.

Set size_t to unsigned long (-
size-t-is-unsigned-long)

Warning Use the option Management of size_t
(-size-t-type-is).

-wchar-t-is-unsigned-long
and -wchar-t-is

Warning

-wchar-
t-is has
been
removed
from the
user
interface
only.

Use the option Management of
wchar_t (-wchar-t-type-is).

-static-headers-object Warning The permissive linking introduced by -
static-headers-object now happens
by default. The option is not required.

 Verification Setup

1-9

Compatibility Considerations

If you use scripts that contain the removed or updated options, update your scripts
accordingly. In the Polyspace user interface, if an option is replaced by another option,
the replacement occurs automatically in your configuration.

R2017b

1-10

Verification Results

Stack Size Computation: Determine maximum stack usage by a C
program and individual functions

Summary: In R2017b, the analysis computes the stack usage by each function in your
program and the entire program. The maximum stack usage by a function is the total
size of all local variables in the function plus the maximum stack usage by the function
callees.

For more information, see:

• Maximum Stack Usage and Minimum Stack Usage
• Program Maximum Stack Usage and Program Minimum Stack Usage

See also “Determination of Program Stack Usage”.

Benefits: You can determine if the stack requirements of your program exceed the
available size on the call stack. If the stack requirements exceed the available stack size,
you can determine which variable or function is responsible and increase the available
stack size or reduce the stack requirements.

MISRA C:2012 Directive 1.1: Detect instances of implementation-
specific behavior in your code

Summary: In R2017b, you can detect possible violations of MISRA C®:2012 Directive
1.1. The directive requires that you understand and document any implementation-
defined behavior that affects the program output. See MISRA C:2012 Dir 1.1.

Benefits: The analysis detects constructs that can have implementation-defined
behavior. If you have such constructs in your code, you can find how your compiler
implements them. Once you understand and document all implementation-defined
behavior, you can be assured that all output of your program is intentional and not
produced by chance.

 Verification Results

1-11

CERT C Support: Identify CERT C violations using run-time error
checkers

Summary: In R2017b, CERT C rules and recommendations are mapped to Code Prover
run-time checks. If you run a Code Prover analysis, you can identify CERT C violations
by using the mapping.

Benefits: You can comply with the CERT C standard with Code Prover. Use a
combination of run-time checks and MISRA C:2012 checkers. See:

• “Check C/C++ Code for Security Standards” (Polyspace Bug Finder)
• “CERT C Coding Standard and Polyspace Results” (Polyspace Bug Finder)

Changes to coding rule checking

Updated Specifications

In R2017b, the following changes have been made in checking of previously supported
MISRA C and MISRA C++ rules.
Rule Description Improvement
MISRA C: 2004
Rule 17.4 and
MISRA® C++
Rule 5-0-15

Array indexing shall be
the only allowed form of
pointer arithmetic.

The rule checker flags array indexing on
nonarray pointers. Previously, the checker
flagged only explicit pointer arithmetic on
pointers.

R2017b

1-12

Rule Description Improvement
MISRA C:2004
Rule 8.9,
MISRA C:2012
Rule 8.6 and
MISRA C++
Rule 3-2-4

An identifier with
external linkage shall
have exactly one external
definition.

The rule checkers flag multiple definitions
only if the definitions occur in different files.
The checkers do not consider tentative
definitions as definitions.

For instance, this code does not violate the
rule:

int val;
int val=1;

 Verification Results

1-13

Reviewing Results

Run-Time Error Cause: Navigate to and view the cause of red
nonterminating loops or function calls

Summary: In R2017b, you can determine the cause of a nonterminating loop over a few
iterations, or a nonterminating function call, if it is due to a run-time error. To navigate
to the cause, right-click the result, and select Go to Cause.

Benefits: You can view the sequence of events leading to the error, including the number
of successful iterations, in the Results Details pane.

R2017b

1-14

See also “Identify Loop Operation with Run-Time Error”.

Results Review Workflow: Sort and filter results by subtype

Summary: In R2017b, you can group your results by subtype through the new Detail
column in the Results list pane. This column shows the first line from the Results
Details pane, which has additional information about a result.

For instance, multiple issues can trigger the same coding rule violation. The Detail
column shows the specific issue that triggered the rule violation.

 Reviewing Results

1-15

Benefits: You can easily mass-edit statuses or comments for results of the same subtype.
In the Results List pane, group results by family, then within a result family use the
Detail column to sort and select a subset.

Result Review Workflow: Hide results that you reviewed once and
justified through source code annotations

Summary: In R2017b, if you justify a result through source code annotations,
subsequent analyses do not redisplay result again. Although the result still appears in
your source code, it does not appear in your results list.

R2017b

1-16

If you want to revisit those justified results, you can make them visible in one-click.

Benefits: When you decide not to fix a finding, you can justify it through source code
annotations. That finding does not clutter your subsequent analysis results.

Suppose the analysis flags an error-handling statement as unreachable code. You do not
want to remove the statement because future code can trigger the error and make the
error-handling necessary. You can justify the unreachable code and choose not to see it
again.

Additional Considerations

• How can I use source code annotations to justify a result?

You can directly type source code annotations in the correct format. See “Justify
Results Through Code Annotations”.

Alternatively, you can copy annotations from information in the user interface.

 Reviewing Results

1-17

• In Eclipse, right-click the result to insert a justification directly in the source code.
• In Eclipse and the Polyspace user interface, assign one of the statuses Justified,

No action planned, or Not a defect to a result. Right-click the result to copy
your justification and paste it in a source code editor. See “Justify Results Through
Code Annotations”.

• Will the hidden results still appear in the report?

The hidden results still appear in the report. The results are hidden from view to save
review effort. The reports are meant for complete documentation of your results. You
cannot hide analysis results from the reports.

Code Annotations: Justify results or define your own format with a new
annotation format

Summary: In R2017b, you can justify your results with the new Polyspace annotation
syntax, or by using your own custom format. Polyspace also interprets existing code
annotations that use a different syntax.

Benefits:

• Easier results review: With the new annotation format, you can provide a justification
for multiple types of results on the same line. Previously, you had to enter the
justification for different types of results, such as defects and coding rules violations,
on different lines.

• Custom annotation format: You can use an XML file to define any annotation format
and map it to the Polyspace syntax. When you analyze your code, Polyspace can
interpret the annotations regardless of the format.

Polyspace still supports annotations that use the old syntax.

MISRA Comments and Code Annotations: Import your existing MISRA
C:2004 justifications to MISRA C:2012 results

Summary: In R2017b, when you check your code against MISRA C:2012 rules,
Polyspace imports existing justifications for MISRA C: 2004 violations.

R2017b

1-18

The analysis maps these justifications to the corresponding MISRA C: 2012 rules, if they
exist.

For more information, see “Import Existing MISRA C: 2004 Justifications to MISRA C:
2012 Results”.

Benefits: You can transition from MISRA C:2004 to MISRA C:2012 compliance. If you
have already justified a coding rule violation for MISRA C: 2004, you do not need to
review the same result for the corresponding MISRA C:2012 rule.

 Reviewing Results

1-19

Variable Relationships in Tooltips: Check if variables in operation are
related from previous operation

Summary: In R2017b, you can determine if the variables in any operation are related
from some previous operation.

For instance, if you want to know if the variables var1 and var2 in the operation
return(var1 – var2) are related, you can insert a pragma before the line and rerun
the analysis:

#pragma Inspection_Point var1 var2

In the results, you see a tooltip on var2 in the pragma, which shows the relation between
them, if one exists.

Benefits: You can use the pragmas as an additional tool for diagnosing results. At any
point in your code, you can tell if certain variables are related to each other. You do not
have to manually inspect your code to find if the variables have been previously related.

See “Find Relations Between Variables in Code”.

Result Status: Assign statuses that directly correspond to stages of
development workflow

Summary: In R2017b, you can assign these statuses to a result. Each status corresponds
to a stage in your code analysis workflow.

• Unreviewed (default status)

R2017b

1-20

• To investigate
• To fix
• Justified
• No action planned
• Not a defect
• Other

Benefits: You can follow your review progress more easily.

Additional Considerations

• How can I use the statuses to follow my review progress?

You can follow your progress in the Polyspace user interface or the Polyspace Metrics
web interface.

• Polyspace user interface: You can filter all results that have a certain status.
• Polyspace Metrics: You can see the percentage of results reviewed and justified. If

you assign a status other than Unreviewed to a result, the software considers the
result as reviewed. If you assign one of these statuses, the software considers the
result as justified: Justified, No action planned, or Not a defect.

• Can I create my own status?

You can still create custom statuses. Select Tools > Preferences and create your
own statuses on the Review Statuses tab.

Compatibility Considerations

If you open results from a previous release, the statuses are updated to the new release.
The updates are:

• Fix or Investigate → To fix or To investigate
• Improve → To fix
• Undecided → Unreviewed.

If your source code annotations use statuses from a previous release, the software reads
your annotations using the updates. The software does not change the annotations
themselves.

 Reviewing Results

1-21

Function Call Hierarchy: View and navigate to function callers and
callees by clicking function name

Summary: In R2017b, you can click function names in your source code to see callers
and callees of the function. You can then click a caller or callee name to go to their
definitions in the source code. The Call Hierarchy pane shows the callers and callees.

When a function is defined, the source code shows the function name in blue. To see
callers and callees on the Call Hierarchy pane, click the function name. For details, see
“Call Hierarchy”.

Benefits: Previously, the Call Hierarchy pane was updated only when you clicked on a
run-time check. You can now navigate the function call hierarchy more naturally by
using function names in your source code.

Additional Considerations

Can I also click function calls to see the callers and callees?

When a function is called, the function call sometimes shows a run-time check color. If
the function does not have a run-time check color (see func2 below), click the function
name to update the Call Hierarchy pane.

R2017b

1-22

If the function has a run-time check color (see func above), right-click the function and
select Go To Definition. The Call Hierarchy pane is updated to show the callers and
callees.

 Reviewing Results

1-23

R2017a

Version: 9.7

New Features

Bug Fixes

Compatibility Considerations

2

Verification Setup

Unified User Interface: Create and maintain a single Polyspace project
for Bug Finder and Code Prover analysis

Summary: In R2017a, you can run Bug Finder and Code Prover analysis on the same
Polyspace project in the same user interface.

Benefits:

• Single entry point for two products: You launch the Polyspace user interface only once
from one icon on your desktop.

• Easier switching between products: After you run a Bug Finder analysis, you can
switch to the more rigorous Code Prover analysis in one click.

• One project, one configuration: Add source files and specify your analysis options only
once. After you set up your project, you can switch between the products without
having to reconfigure.

Additional Considerations:

• What if I only want to run a Bug Finder analysis?

R2017a

2-2

You have to set the options that apply to a Bug Finder analysis. Most options are
common between Bug Finder and Code Prover. So, you still have the benefit that most
of your options will be set if you ever switch to Code Prover.

The options specific to Bug Finder appear in the Bug Finder Analysis node, and the
ones specific to Code Prover in the Code Prover Verification node and the nodes
underneath.

• If I run analysis in the two products, will the two sets of results appear together?

Yes, but not in the same view. The two sets of results appear under the same project,
both in the user interface and in the physical folder locations.

• In the user interface, in the Project Browser, the Bug Finder results appear with
the icon and the Code Prover results appear with the icon.

• In your file explorer, you find the result folders for both analysis under one project
folder.

However, after you run the two analyses, you have to open the two sets of analysis
results separately to review them. In the user interface, double-click one of the two
result icons to open the results corresponding to that product.

• Besides analysis options, are there other changes from pre-R2017a that I should be
aware of?

If you were previously using only one of the two products, you will now notice the
following differences.

Bug Finder User:

• You can now create multiple modules in your Polyspace project to analyze separate
components of your source code.

When you create a project and add your source files, they are automatically added
to the first module. If you add source files later, you have to select them and using
the right-click option Copy to Module_n, copy them to the module that you want.

• You can now choose to create a new result folder for a second analysis on the same
module. Use the option Create new Bug Finder result folder from the Run
button dropdown. Prior to R2017a, there was one result folder for Bug Finder. If
you ran a second analysis, it overwrote the previous results. Note that the
overwriting is still the default behavior.

 Verification Setup

2-3

• A new icon is used to denote defects.

Before R2017a:

R2017a:

Code Prover User:

• If you run a second analysis on the same module, by default, it overwrites the
previous results. Prior to R2017a, a new result folder was created by default every
time you ran an analysis.

You can change this default behavior and create a new result folder for the second
analysis. Use the option Create new Code Prover result folder from the Run
button dropdown.

• If some of your files do not compile, the analysis continues with the remaining
files. If a file with compilation errors contains a function definition, the analysis
considers the function as undefined and uses a function stub instead. You can see
which files did not compile on the Output Summary pane and also in the report
generated from the verification results.

R2017a

2-4

Previously, the default analysis required that all of your files must compile. To
revert to this default behavior, use the option Stop analysis if a file does not
compile (-stop-if-compile-error).

• A new icon is used to denote definite run-time errors or red checks.

Before R2017a:

R2017a:

• I use DOS/UNIX®/MATLAB scripts to launch the analysis. How does this change
affect me?

The change does not affect you directly. For instance, you still use two separate
commands polyspace-bug-finder-nodesktop and polyspace-code-prover-
nodesktop to run analysis from the DOS/UNIX command line. However, if you
specify your options in a Polyspace project in the user interface and then create a
script from the project, you have to specify your options only once for both products.

Once you specify your options in the Polyspace project, you can easily create a script
for the individual products. For instance, to create a Windows® batch file that runs a
Code Prover analysis, run the command:

polyspace -generate-launching-script-for myproject.psprj

To create a Windows batch file that runs a Bug Finder analysis, run the command:

polyspace -bug-finder -generate-launching-script-for myproject.psprj

 Verification Setup

2-5

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/stopanalysisifafiledoesnotcompilestopifcompileerror.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/stopanalysisifafiledoesnotcompilestopifcompileerror.html

Improved Speed and Precision: Run analysis faster and receive fewer
orange checks as compared to previous releases

Summary: In R2017a, Polyspace analysis uses many improvements that increase
precision and reduce analysis time significantly, sometimes by as much as 30%. For
instance, in presence of arrays and nested structures, the analysis is faster and more
precise.

Benefits:

• Less wait time: You are likely to spend less time waiting for the analysis to complete.
• Less review time: For most applications, you are likely to have fewer orange checks

and spend less time manually reviewing them.

TASKING Compiler Support: Set up Polyspace analysis easily for code
compiled with Altium TASKING compiler

Summary: If you build your source code with the Altium® TASKING compiler, in
R2017a, you can specify the compiler name for your Polyspace analysis. The analysis can
interpret macros that are implicitly defined by the compiler and compiler-specific
language extensions such as keywords and pragmas.

You can specify the following target processors directly: tricore, c166, rh850 or arm.
See TASKING Compiler (-compiler tasking).

Benefits: You can now set up a Polyspace project without knowing the internal workings
of your TASKING compiler. If your code compiles with your compiler, it will compile with
Polyspace in most cases without requiring additional setup. Previously, you had to
explicitly define macros that were implicitly defined by the compiler and remove
unknown language extensions from your preprocessed code.

R2017a

2-6

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/taskingcompilercompilertasking.html

Updated Visual C++ Support: Set up Polyspace analysis easily for code
compiled with Microsoft Visual C++ 2015 compiler

Summary: If you build your source code with the Microsoft Visual C++ 2015 compiler, in
R2017a, you can specify the compiler name for your Polyspace analysis. The analysis can
interpret macros that are implicitly defined by the compiler and compiler-specific
language extensions such as keywords and pragmas.

For more information, see Compiler (-compiler).

Benefits:

• Easier compilation: You can now set up a Polyspace project without knowing the
internal workings of your Microsoft Visual C++ 2015 compiler.

• More precise analysis: The analysis provides precise results when you use compiler-
specific extensions.

Autodetection of Concurrency Primitives: Multitasking model detected
from Windows or μC/OS II multithreading functions

Summary: In R2017a, if you use the Windows or μC/OS II functions for multitasking,
the Polyspace analysis can interpret them semantically.

Polyspace interpets the following functions:
Family Thread Creation Critical Section Begins Critical Section Ends
Windows CreateThread EnterCriticalSectio

n
LeaveCriticalSection

μC/OS II OSTaskCreate OSMutexPend OSMutexPost

 Verification Setup

2-7

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/compilercompiler.html

Benefits: You do not have to adapt your code or specify your multitasking model
manually through analysis options. The analysis determines your multitasking model
from the functions in your code and checks if shared variables are sufficiently protected.

Manual Multitasking Setup: Functions beginning and ending critical
sections do not need to be defined

Summary: In R2017a, if you specify that certain functions begin and end critical
sections, you do not have to provide their definitions to Polyspace.

Benefits: If you use functions provided by your operating system whose definitions are
not readily accessible, you do not have to provide the definitions.

Manual Multitasking Setup: main Function Not Required

Summary: In R2017a, you can run verification on multitasking applications that do not
have a main function.

Benefits: Previously, Code Prover analysis required a main function for multitasking. If
your code did not have a main function, you had to add a main to your source code or
preprocessed code just for the Code Prover analysis.

The software now adds an empty main function for you. If your code has a main function,
the software continues to use that main function for analysis.

Specifying Function Names for Options: Choose from prepopulated list
in user interface instead of entering manually

Summary: In R2017a, for options that take function names, you can choose the names
from a list.

For instance, to specify which functions act as entry points to your multitasking
application, you can choose the names from a list as follows:

R2017a

2-8

Benefits: You do not have to enter the names manually. If the functions list is long, you
can start typing the function name to reduce the list.

Polyspace API in MATLAB: Create MATLAB objects from Polyspace
projects to run analysis
Summary: In R2017a, you can create a MATLAB object from a Polyspace project
(.psrpj file). For instance, if you have a file myProject.psprj in the current working
folder, enter:
opts = polyspace.loadProject('myProject.psprj')

Use the object opts in MATLAB scripts to run a Polyspace analysis:

 Verification Setup

2-9

polyspaceCodeProver(opts);

Benefits:

You can now consider the following workflows:

• Set options in GUI and script analysis: Use the Polyspace user interface to specify
options in your Polyspace project, or adjust options based on results from a trial run.
After the options are stable, create a MATLAB object opts from the project and store
it in a MAT-file. As you move along in your development cycle, simply load opts from
your MAT-file, update opts.Sources to add new source files, update other
properties as required, and use opts to run analysis. For all properties of the object,
see polyspace.Options.

• Create project from your build command and script analysis: Use the function
polyspaceConfigure to create a .psrpj file from your build command (makefile).
Create a MATLAB object from that file to run analysis. In this way, you can use a
MATLAB script for the entire Polyspace analysis workflow beginning from your
makefile.

Additional Considerations:

• A single Polyspace project works for both Bug Finder and Code Prover. Can I likewise
use the object to run both a Bug Finder and Code Prover analysis?

Yes, once you create the MATLAB object from a Polyspace project, you can use it with
both functions polyspaceBugFinder and polyspaceCodeProver.

• Can I create an object from a project that I have from a pre-R2017a version of
Polyspace?

Yes, you can.

Improved support for user implementations of standard library functions
Summary: If the arguments or return value of a standard library function have data
types that are defined in your header files, Polyspace compilation now uses your type
definitions. Polyspace compilation uses its own implementation of standard library
functions and previously, looked for specific type definitions in specific header files.
Compilation errors occurred if the definitions could not be found in those specific header
files.

For instance, the fopen function returns a FILE* pointer.

R2017a

2-10

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/polyspace.options-properties.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/polyspaceconfigure.html

FILE * fopen (const char * filename, const char * mode);

Suppose, you define FILE using a typedef in an included header file that is not
stdio.h, as follows:

typedef int FILE[4];

Polyspace compilation uses this definition of FILE. Previously, the compilation looked for
the definition of FILE only in stdio.h.

Benefits:

• Compilation errors avoided: You see fewer compilation errors due to your
implementations of standard library functions.

• Better analysis: The analysis uses data types for your standard library functions the
way you have defined them. Therefore, it interprets your code more accurately.

Improvement in automatic project creation from build systems

Summary: In R2017a, by default, automatic project creation will throw an error if a
project with the same name exists in the output folder.

If you encounter an error, avoid the name conflict: change the project name, output
folder, or remove your older project.

Benefits: You cannot overwrite existing projects by accident. If you use scripts that are
intended to overwrite existing projects, use the additional option -allow-overwrite.

Changes in analysis options and binaries

In R2017a, these options have been added, changed, or removed.

 Verification Setup

2-11

Updated Options

Option Change More Information
Report template Renamed

in user
interface

New name: Code Prover report

The command-line name is still -
report-template.

Batch Renamed
in user
interface

New name: Run Code Prover analysis
on a remote cluster

The option is now in the Run Settings
node in your project configuration.

The command-line name is still -batch.
Add to results repository Renamed

in user
interface

New name: Upload results to
Polyspace Metrics

The option is now in the Run Settings
node in your project configuration.

The command-line name is still -add-
to-results-repository.

Compiler (-compiler) New value
added

You can specify the following arguments:

• tasking

See TASKING Compiler Support on
page 2-6.

• visual14.0

See Microsoft Visual C++ Support on
page 2-7.

Infinities (-check-infinite) Available
in user
interface

Previously, this advanced option was
available only on the command line.

NaNs (-check-nan) Available
in user
interface

Previously, this advanced option was
available only on the command line.

R2017a

2-12

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/infinitiescheckinfinite.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/nanschecknan.html

Removed Options

Option Status More Information
Optimize large static
initializers (-no-fold)

Removed The benefits that came with -no-fold
now appear by default, without the
associated costs in precision. So the
option is not required.

Continue with compile error
(-continue-with-compile-
error)

Removed The option is enabled by default in Code
Prover. In other words, if some files have
compilation errors, by default, the
analysis continues with the remaining
files.

If you want analysis to stop from even a
single compilation error, use the option
Stop analysis if a file does not compile (-
stop-if-compile-error).

Green absolute address
checks (-green-absolute-
address-checks)

Removed Absolute address usage checks are green
by default. To remove this assumption
and produce an orange check, use the
option -no-assumption-on-
absolute-addresses.

Files and folders to ignore (-
includes-to-ignore)

Removed Use the option Do not generate results
for (-do-not-generate-results-
for) to suppress results from headers
and sources in certain files or folders.

Ignore float rounding (-
ignore-float-rounding)

Removed

-retype-pointer Removed
-retype-int-pointer Removed
-lwtm Removed
-support-FX-option-results Removed
No automatic stubbing (-no-
automatic-stubbing)

Error Option will be removed in a future
release.

 Verification Setup

2-13

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/stopanalysisifafiledoesnotcompilestopifcompileerror.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/stopanalysisifafiledoesnotcompilestopifcompileerror.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/absoluteaddressusage.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/noassumptiononabsoluteaddresses.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/noassumptiononabsoluteaddresses.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/donotgenerateresultsfordonotgenerateresultsfor.html

Option Status More Information
-easy-setup-preprocess Error Option will be removed in a future

release.
gui-api Error Binary will be removed in a future

release.
Use polyspace-comments-import
instead.

polyspace-automatic-
verification

Error Binary will be removed in a future
release.

polyspace-remote Error Binary will be removed in a future
release.

polyspace-verifier Error Binary will be removed in a future
release.

rte-kernel Error Binary will be removed in a future
release.

Dialect (-dialect) Error Option will be removed in a future
release.

Use Compiler (-compiler) instead.

R2017a

2-14

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/compilercompiler.html

Option Status More Information
Target operating system (-OS-
target)

Error Option will be removed in a future
release.

If you use this option in scripts, see the
list below for replacements:

• Linux: If you get compilation errors,
use Compiler (-compiler) gnux.x.

Sometimes, you might also have to
set Preprocessor definitions (-D) to
linux, unix, or __linux__.

• Visual: Use Compiler (-compiler)
visualx.x

• Vxworks: Use the VxWorks®
configured template.

For more information, see Create
Project Using Configuration
Template.

• Solaris: Remove -OS-target.
• no-predefined-OS: Remove -OS-

target.
Import folder (-import-dir) Warning Option will be removed in a future

release.

Compatibility Considerations
If you use scripts that contain the removed or updated options, change your scripts
accordingly.

Changes in MATLAB options object
These classes will be removed in a future release.

• polyspace.CodeProverOptions: To customize Polyspace analysis of handwritten
code, use polyspace.Options instead.

 Verification Setup

2-15

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/preprocessordefinitionsd.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ug/save-analysis-options-as-project-template.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ug/save-analysis-options-as-project-template.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ug/save-analysis-options-as-project-template.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/polyspace.codeproveroptions-class.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/polyspace.options-class.html

• polyspace.ModelLinkCodeProverOptions: To customize Polyspace analysis of
generated code, use polyspace.ModelLinkOptions instead.

The properties and methods of the new classes are almost the same as the original
classes. If optsOld is an object of the original class and optsNew is an object of the new
class, the following properties have changed.
Reporting

Removed Use instead
optsOld.Reporting.
EnableReportGeneration

optsNew.MergedReporting.
EnableReportGeneration

optsOld.Reporting.ReportTemplate optsNew.MergedReporting.
CodeProverReportTemplate

optsOld.Reporting.
ReportOutputFormat

optsNew.MergedReporting.
ReportOutputFormat

ComputingSettings

Removed Use instead
optsOld.ComputingSettings.Batch optsNew.MergedComputingSettings.

BatchCodeProver
optsOld.ComputingSettings.
AddToResultsRepository

optsNew.MergedComputingSettings.
AddToResultsRepositoryCodeProver

Compatibility Considerations

Replace instances of the old class names in your MATLAB scripts with the new class
names. Then, replace the properties accordingly.

Even if you continue to use the old class names, you must change the properties, as
described above.

Change in temporary folder location

In R2017a, Polyspace looks for standard environment variables such as TMPDIR to store
temporary files during an analysis. Previously, Polyspace used the folders /tmp or C:
\Temp during analysis.

R2017a

2-16

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/polyspace.modellinkcodeproveroptions-class.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/polyspace.modellinkoptions-class.html

You can also store Polyspace temporary files in a folder different from the standard
temporary folders. To learn how Polyspace determines the temporary folder location, see
Storage of Temporary Files.

Compatibility Considerations

If your analysis seems slower than before, check if the new temporary folder is on a
network drive. For faster analysis, use a folder on a local drive instead.

 Verification Setup

2-17

https://www.mathworks.com/help/releases/R2017a/codeprover/ug/storage-of-temporary-files.html

Verification Results

Integers in Floating Point: See improved analysis precision for floating
point variables that always take integer values
Summary: In R2017a, the analysis can detect float or double variables that take
integer values.

For instance, in the following code, despite the cast to double, the verification detects
that i takes integer values.

Benefits:

• Improved analysis precision: The analysis uses more precise integer arithmetic for
these variables.

• Better understanding of results: The range tooltip on these variables show that they
take integer values only. You can use this information to interpret certain results.

New Code Metrics: See number of lines in header files and number of
local variables per function
Summary: In R2017a, Polyspace can provide the following new code complexity metrics:

R2017a

2-18

• Number of lines and number of lines without comments in header files
• Number of local non-static variables for every function and method
• Number of local static variables for every function and method

Benefits: You can determine the memory footprints of your code using these new metrics
(along with other already existing metrics).

Checks Green by Definition: Distinguish operations that are safe by
definition from operations that are proven safe

Summary: In R2017a, certain numerical run-time checks clearly indicate whether the
check is green by definition.

The messages for such checks state that the operation is safe with respect to the run-
time check, whatever the operand values. For instance, the sqrt or cbrt function cannot
return subnormal values.

Benefits: If an operation is safe by definition, you do not need to protect against unsafe
behavior. If an operation is safe only in the current context, you need to recheck the
operation when reusing it in another context. Being able to identify operations that are
safe by definition helps you determine if you need to protect against later unsafe
behavior.

Additional considerations:

• Can I tell by visual inspection that an operation is safe by definition?

Sometimes, you can. In other cases, rigorous mathematical calculations are required
to prove that an operation is safe by definition. Polyspace verification shows you all
such operations in green, providing you the assurance that your usage is safe with
respect to the run-time check.

• Which checks can be green by definition?

The following checks can be green by definition.

• Subnormal float: Checks green by definition highlight operations that cannot
return subnormal results, whatever the operand values.

• Overflow: Checks green by definition highlight operations that cannot overflow,
whatever the operand values.

 Verification Results

2-19

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/numberoflines.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/numberoflineswithoutcomment.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/numberoflocalnonstaticvariables.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/numberoflocalstaticvariables.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/subnormalfloat.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/overflow.html

• Invalid operation on floats: Checks green by definition operations that cannot
return NaN, whatever the operand values.

The meaning of green by definition depends on your analysis mode. For instance, in
the warn-first mode of the Subnormal float check, green means that an operation
cannot return subnormal results unless the operands themselves are subnormal.
Green by definition incorporates this change in meaning of green.

Function Pointer Signature Mismatch: View orange checks instead of
red when the mismatch cannot be proven

Summary: In R2017a, the Correctness condition check on calls through function
pointers aligns more closely with the general semantics of Code Prover checks. The check
is red only if the verification proves that the function pointer does not point to a function
with matching signature.

Benefits: You can follow the same review policy with Correctness condition checks as
with other checks. Previously, the Correctness condition checks could be red even if
the analysis did not prove a mismatch between the function pointer and the function that
it points to. These red checks indicated that the verification cannot identify which
function to call, because of imprecisions or lack of external information. In these cases,
the checks are now orange.

Compatibility Considerations

You can see a change in the number of red and orange Correctness condition checks.

Structures with Volatile Fields: See improved analysis precision and
apply constraints if necessary

Summary: In R2017a, the software analyzes volatile-qualified structure fields more
precisely.

• The analysis can distinguish between volatile and nonvolatile fields. Previously, if one
field of a structure was volatile, the analysis either considered all fields as volatile or
ignored the volatile qualifier for all fields, depending on the option you select.

For instance, in the following code, the software previously considered both val1 and
val2 as volatile or not.

R2017a

2-20

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/invalidoperationonfloats.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/correctnesscondition.html

typedef struct myStruct
{
 volatile int val1;
 int val2;
};

If the analysis considers the volatile qualifier for structure fields, they can take
any value allowed by their data type at any point in the code.

• You can specify permanent constraints on volatile-qualified structure fields to
narrow down their assumed range. See Constraints.

This improvement also applies to volatile-qualified arrays.

Benefits: You have to review fewer orange checks from imprecise analysis of structures
with volatile fields.

Compatibility Considerations

Unless you use the default assumption to ignore the volatile qualifier on structure
fields, you can see a reduction in the number of orange checks.

Changes to coding rule checking

In R2017a, the following changes have been made in checking of previously supported
MISRA C rules.

 Verification Results

2-21

https://www.mathworks.com/help/releases/R2017a/codeprover/ug/drs-configuration-settings.html

Rule Rule Improvement
MISRA C: 2004
Rule 5.1

Identifiers (internal and
external) shall not rely on
the significance of more
than 31 characters.

The rule checker shows all identifiers that
have the same first 31 characters as one rule
violation. Previously, every pair of identifiers
with same 31 characters was shown as a
separate violation.

For instance, in the following code snippet,
the rule violation appears only once.

extern int
 engine_exhaust_gas_temperature_raw;
static int
 engine_exhaust_gas_temperature_scaled;
static int
 engine_exhaust_gas_temperature_cutoff;

Previously, the violation was shown three
times.

You have to review only one rule violation for
every group of identifiers with the same 31
characters. You can still see all instances of
conflicting identifier names in the event
history of that rule violation.

MISRA C:2012
Rule 8.5

An external object or
function shall be declared
once in one and only one
file.

The rule checker considers that variables or
functions declared extern in a non-header
file violates this rule.

R2017a

2-22

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/misrac2012rule8.5.html
https://www.mathworks.com/help/releases/R2017a/codeprover/ref/misrac2012rule8.5.html

Reviewing Results

Easier Review: View verification assumptions, see unreachable and
aliased function calls in call graph

Summary: In R2017a, you can review Polyspace Code Prover checks more easily using
new features in the Polyspace user interface.

• Verification assumptions: You can see the assumptions that the software makes,
collected in one place.

If an assumption can be changed, the Analysis assumptions pane shows the
assumption.

The Polyspace documentation lists the core assumptions that you cannot change. See
Polyspace Software Assumptions.

You can also see the modifiable assumptions in reports generated using a Code Prover
template.

• Improved function call hierarchy: The Call Hierarchy pane shows which function
calls are unreachable (shown in gray) and which calls are made through function
pointers (shown with the icon).

For instance, in the following figure, the function main calls func1 directly, and calls
func2, func3 and func5 indirectly via function pointers. The call to func4 is
unreachable.

 Reviewing Results

2-23

https://www.mathworks.com/help/releases/R2017a/codeprover/polyspace-assumptions.html

Benefits: The new features help you interpret analysis results more easily.

• Verification assumptions: To interpret certain analysis results, you can now browse
through the list of analysis assumptions. If an analysis option is available to change
the assumption, you can find the option more easily.

• Improved function call hierarchy: To interpret certain analysis results, you can now
check quickly if an expected function call does not occur in practice.

Folder Names in Results: Filter or group analysis results by source
folder names

Summary: In R2017a, the source folder name is shown in the list of analysis results.

R2017a

2-24

Benefits: You can order your results by folders or filter results belonging to specific
folders. Using custom filters, you can filter out the subfolders of a folder in one click.

Code to Model Traceability: Switch easily between identifiers in
generated code and corresponding blocks in model

Summary: In R2017a, you can trace an instance of a variable in generated code back to
your model.

 Reviewing Results

2-25

The model shows the corresponding block highlighted in blue. If the block is in a
subsystem, both the subsystem and the block are highlighted in blue.

Benefits:

• More convenient navigation: Previously, you traced back from code to model via links
in code comments. You can now navigate from the code operations themselves.

• More fine-grained navigation: You can easily identify which block in your model leads
to which operation in the generated code.

Polyspace API in MATLAB: Read Polyspace analysis results from
MATLAB

Summary: You can read your Polyspace analysis results into a MATLAB table. For
instance, if the folder C:\MyResults contains results of a Polyspace analysis, enter the
following:

resObj = polyspace.CodeProverResults('C:\MyResults')
resSummary = getSummary(resObj)
resTable = getResults(resObj)

resSummary and resTable are two MATLAB tables containing summary and details of
the Polyspace results.

See also polyspace.CodeProverResults.

Benefits: You can use the capabilities of MATLAB to obtain graphs and statistics about
your Polyspace results.

R2017a

2-26

https://www.mathworks.com/help/releases/R2017a/codeprover/ref/polyspace.codeproverresults-class.html

R2016b

Version: 9.6

New Features

Bug Fixes

Compatibility Considerations

3

Verification Setup

Diab Compiler Support: Set up Polyspace verification easily for code
compiled with Wind River Diab compiler
If you build your source code using the Wind River® Diab compiler, in R2016b, you can
easily set up a Polyspace project to verify your code. After you specify the Diab compiler
and your target processor, the verification:

• Implicitly defines macros that are defined for the Diab compiler. Previously, you
defined the macros in your Polyspace project explicitly to avoid compilation errors.

• Understands language extensions such as keywords and pragmas that are specific to
the Diab compiler. Previously, you removed unknown language extensions explicitly
from the preprocessed code in your Polyspace project to avoid compilation errors.

You can now set up a Polyspace project manually without knowing the internal workings
of your Diab compiler. Specify the Diab compiler and your target processor, and run
verification without facing compilation errors. See Diab Compiler (-compiler diab).

The software supports version 5.9 and older versions of the Diab compiler.

Multitasking Code Verification Setup: Specify cyclic tasks and
nonpreemptable interrupts directly as verification options
In R2016b, you can specify which entry points in your code represent cyclic tasks and
nonpreemptable interrupts. Previously, to emulate the cyclic behavior of a task, you
embedded instructions in a loop. To emulate a nonpreemptable interrupt, you specified
temporally exclusive pairs where the interrupt was paired with allall other interrupts.

For more information, see Cyclic tasks (-cyclic-tasks) and Interrupts (-interrupts).

Improved source and include folder management
Before R2016b, when you created a project, you added and removed source files and
include folders individually. If you moved your source files or added new files to your
programming project, you re-added the files into your Polyspace project.

Starting in R2016b, you create Polyspace projects with root source folders and include
folders. The root folder location represents the top of the hierarchy for your source files.

R2016b

3-2

https://www.mathworks.com/help/releases/R2016b/codeprover/ref/diabcompilercompilerdiab.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/cyclictaskscyclictasks.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/interruptsinterrupts.html

Polyspace shows allall files relative to the root source locations. When you add a root
source location, you can:

• See allall source files under the root folder (and subfolders)
• Exclude files and subfolders in the hierarchy to change the active list of source files to

analyze.
• Refresh the source file list to see new files or folders in the root source hierarchy.
• Modify the root source folder path.
• If you use a revision control system, change the root folder location to point to

different versions of your source files.

For include folders, instead of adding individual folders, you add a root include folder
location. Polyspace adds allall include folders underneath the root include location that
contains include files. You can refresh and modify the include folder path.

For more information, see Create Project.

Writable Examples: Modify example projects and restore original
versions

The examples projects under Help > Examples are now easier to use. The first time
that you open an example project, a writable version is saved in your
Polyspace_Workspace. In the writable project, you can test configuration options,
change sources, and rerun the example. If you want to refresh the example with a clean
version, select Help > Examples > Restore Default Examples.

Run verification on .psprj file from the command line

If you already have a project created in the Polyspace Interface, you can now use
that .psprj file to run your verification from a command line.

DOS or UNIX Command Line

Use the new option polyspace-code-prover -generate-launching-script-for
<PSPRJ FILE> to generate the files to run the analysis from the command line. These
files are generated:

• source_command.txt — List of source files in the project

 Verification Setup

3-3

https://www.mathworks.com/help/releases/R2016b/codeprover/ug/create-project-manually.html#buo60l5-1
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/generatelaunchingscriptfor.html

• options_command.txt — List of analysis option settings
• launchingCommand.sh or launchingCommand.bat — Script that runs the

verification using options_command.txt, source_command.txt. The script can
also take additional analysis options as parameters.

For more information, see Create Command-Line Script from Project File.

MATLAB Command Prompt

At the MATLAB command prompt, you can now give a .psprj file as an argument to
polyspaceCodeProver.

The syntax polyspaceCodeProver(PSPRJ file,'nodesktop') runs a verification on
the project. If you have multiple modules or configurations, the active module and active
configuration are verified.

Polyspace API in MATLAB: Configure and run Polyspace using
MATLAB objects

In R2016b, Polyspace scripting from MATLAB is easier and more MATLAB-friendly.
R2016b introduces a set of classes, methods, and function improvements to help you run
Polyspace from MATLAB. For more information and examples, see the linked reference
pages.

Classes

Name Description
polyspace.CodeProverOptions An options object with properties that map to the

Polyspace environment configuration options. Use this
object to customize analysis options and run analysis.

polyspace.ModelLinkCodeProverO
ptions

Another version of the CodeProverOptions object with
properties specifically for model generated code. Use this
object to customize analysis options and run analysis.

polyspace.GenericTargetOptions A helper object for the CodeProverOptions classes. Use
this object to customize a generic target.

polyspace.CodingRulesOptions A helper object for the CodeProverOptions object. Use
this object to customize the list of coding rules checked
during the analysis.

R2016b

3-4

https://www.mathworks.com/help/releases/R2016b/codeprover/ug/create-command-line-script-from-project-file.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/polyspacecodeprover.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/polyspace.codeproveroptions-class.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/polyspace.modellinkcodeproveroptions-class.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/polyspace.modellinkcodeproveroptions-class.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/polyspace.generictargetoptions-class.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/polyspace.codingrulesoptions-class.html

Methods

Name Description
polyspace.Options.copyTo Copy settings between options objects. You can use this

method to copy options from a CodeProverOptions
object to a BugFinderOptions object and vice versa.

polyspace.Options.generateProj
ect

Generate a .psprj file from an options object to open in
the Polyspace interface.

Functions

Name Description
polyspaceCodeProver Run an analysis using CodeProverOptions objects

or .psprj files.

Configuration Parameters Help: View descriptions of Polyspace options
in Simulink configuration parameters
When you use the Simulink® plugin, you must set Simulink configuration parameters to
run your analysis. If you need help setting the configuration parameters, you can now
right-click a configuration parameter and get What’s This help. When you select
What’s This, a help window opens with details about the different settings and
limitations of the parameter.

For more information about the configuration parameters, see Configure Code
Verification.

Eclipse Build Support: Set up Polyspace verification from Eclipse build
command
In R2016b, if you use a build command to build your source code in Eclipse™ or an IDE
based on Eclipse, you can easily set up your Polyspace verification. To obtain the
compiler options required for the verification, trace the build command inside the IDE.
For more information, see Configure Verification.

Visual Studio 2010 add-in support to be removed from installation
In a future release, the Polyspace add-in for Visual Studio® 2010 will not be included
with the installation.

 Verification Setup

3-5

https://www.mathworks.com/help/releases/R2016b/codeprover/ref/polyspace.options.copyto.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/polyspace.options.generateproject.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/polyspace.options.generateproject.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/polyspacecodeprover.html
https://www.mathworks.com/help/releases/R2016b/codeprover/configure-code-verification.html
https://www.mathworks.com/help/releases/R2016b/codeprover/configure-code-verification.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ug/configure-polyspace-verification.html

To run Polyspace on code from Visual Studio, use the automatic configuration tool
instead. See Create Project Using Visual Studio Information.

If you still want to use the add-in, you will be able to download the add-in from MATLAB
Answers.

Support for Rhapsody 8.1

Starting in R2016b, the Polyspace plugin for IBM® Rational® Rhapsody® supports
Rhapsody 8.1. For more information, see Verify Code in IBM Rational Rhapsody
Environment.

DOS Mode Warning on Linux: Compilation warning for DOS
inconsistencies

When using Polyspace on Linux®, a new compilation warning may appear. On Windows,
DOS is case-insensitive meaning you cannot have two files with the same name but
different capitalization. If you select the option Code from DOS or Windows file system (-
dos)Code from DOS or Windows file system (-dos), Polyspace simulates this DOS
behavior on Linux. If your source files include header files with inconsistent
capitalization and it is unclear which file should be included, Polyspace issues a
compilation warning.

For example, consider these two situations:
 Include Statements Include Files
Situation 1 #include "myheader.h"

#include "MYHEADER.h"
#include "MyHeader.h"

myheader.h

Situation 2 #include "myheader.h"
#include "MYHEADER.h"
#include "MyHeader.h"

myheader.h
MYHEADER.h

In the first situation, only one file exists with the name myheader.h. Because these
include statements can only refer to one file, it is obvious which file to include. A warning
is not issued.

In the second situation, two files exist: myheader.h and MyHeader.h. Because they
have the same name and different capitalization, the capitalization in the include
statement affects which file is included. Polyspace can find perfect matches for the first

R2016b

3-6

https://www.mathworks.com/help/releases/R2016b/codeprover/ug/configuring-polyspace-project-using-visual-studio-project-information.html
https://www.mathworks.com/help/releases/R2016b/codeprover/gs/verify-code-in-ibm-rational-rhapsody-environment.html
https://www.mathworks.com/help/releases/R2016b/codeprover/gs/verify-code-in-ibm-rational-rhapsody-environment.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/codefromdosorwindowsfilesystemdos.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/codefromdosorwindowsfilesystemdos.html

and second include statements. The last include statement is not a perfect match, so
could refer to either header file. Because there is ambiguity with the last include
statement, Polyspace issues this compilation warning: warning: could not find
include file "MyHeader.h".

In a future release, this compilation warning will become a compilation error.

Faster Restart for Remote Verification: Reuse compilation results from
a previous analysis

In R2016b, if a remote verification stops after compilation, for instance because of
communication problems between the server and client computers, you do not have to
restart the verification from the beginning. You can reuse compilation results from the
previous failed analysis.

For more information, see -submit-job-from-previous-compilation-results.

Internal Memory Limits Removed: Expect fewer analysis failures from
memory-intensive processes

In R2016b, several internal limits on memory usage have been removed. Previously, if
certain processes consumed memory above a certain limit (around 5 GB per process),
those processes were stopped and the overall analysis failed. Now you are less likely to
see failures from memory-intensive processes.

If you were unable to complete analysis on large or complex projects because of failures
from memory-intensive processes, you are more likely to succeed in R2016b.

Support for local threads

Starting in R2016b, Polyspace adds support for these local thread modifiers:

• __thread — requires Compiler (-compiler) gnu4.8
• __declspec(thread) — requires Compiler (-compiler) visual
• thread_local — only for C++ code.

This support may eliminate compilation errors or change variable from shared to non-
shared.

 Verification Setup

3-7

https://www.mathworks.com/help/releases/R2016b/codeprover/ref/submitjobfrompreviouscompilationresults.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/compilercompiler.html

Changes in Target & Compiler analysis options

In R2016b, these Target & Compiler options have been added, changed, or removed.
Option Change More Information
Compiler (-compiler) New option
Dialect (-dialect) Removed

from the user
interface.

If you use the
option in your
scripts, you
see a
warning.

Option will be permanently removed in a future
release.

Replace -dialect with -compiler while
retaining the option argument. In the user
interface, this replacement is done automatically
for existing projects.

If you use the Wind River Diab compiler to build
your source code, use the option Compiler (-
compiler) with argument diab.

Target processor type
(-target)

Updated for
the Wind
River Diab
compiler.

In the user interface, if you select diab for
Compiler (-compiler), you see target processors
that are tailored to the Diab compiler. For the
processor specifications, see the contextual help.

R2016b

3-8

https://www.mathworks.com/help/releases/R2016b/codeprover/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/targetprocessortypetarget.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/targetprocessortypetarget.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/compilercompiler.html

Option Change More Information
Target operating
system (-OS-
target)

Removed
from the user
interface.

If you use the
option in your
scripts, you
see a
warning.

Option will be permanently removed in a future
release.

Remove the option from your scripts. For some
option arguments, you might have to perform
these additional steps:

• Linux: If you get compilation errors, use a
gnux.x argument for Compiler (-compiler).

Sometimes, you might have to explicitly define
operating-system-specific macros such as
linux, unix, or __linux__. See Preprocessor
definitions (-D).

• Visual: Use a visualx.x argument for
Compiler (-compiler).

• Vxworks: Use the options from the VxWorks
templates.

Create a Polyspace project using one of the
VxWorks templates and generate a script from
your project. Copy the options related to the
VxWorks template from this script. For more
information, see Create Project Using
Configuration Template and the reference
page for -generate-launching-scripts-
for.

• Solaris: Just remove the option -OS-
target.

• no-predefined-OS: Just remove the option -
OS-target.

Changes in analysis options and binaries

In R2016b, these options have been added, changed, or removed.

 Verification Setup

3-9

https://www.mathworks.com/help/releases/R2016b/codeprover/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/preprocessordefinitionsd.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/preprocessordefinitionsd.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ug/save-analysis-options-as-project-template.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ug/save-analysis-options-as-project-template.html

For changes to Target & Compiler options, see “Changes in Target & Compiler analysis
options” on page 3-8. For other options, see the following table.
New Options

Option Description
Cyclic tasks (-cyclic-tasks) Specify functions that represent cyclic tasks.
Interrupts (-interrupts) Specify functions that represent nonpreemptable

interrupts.
Consider environment pointers as
unsafe (-stubbed-pointers-are-
unsafe)

Specify that stubbed pointers coming from external
code can be unsafe to dereference, unless otherwise
constrained.

Consider volatile qualifier on
fields (-consider-volatile-qualifier-
on-fields)

Consider that structures with volatile-qualified
fields can change between consecutive accesses.

Subnormal detection mode (-
check-subnormal)

Detect operations that result in subnormal floating
point values.

Generate stubs for Embedded
Coder lookup tables (-stub-
embedded-coder-lookup-table-
functions)

Stub autogenerated functions that use lookup tables
and model them more precisely.

-preemptable-interrupts Specify functions that represent preemptable
interrupts.

-non-preemptable-tasks Specify functions that represent nonpreemptable
tasks.

-function-behavior-specifications • Map your library functions to standard library
functions recognized by Polyspace.

• Specify functions that contain lookup tables with
linear interpolation and no extrapolation.

-submit-job-from-previous-
compilation-results

Specify that the analysis job must be resubmitted
without recompilation.

R2016b

3-10

https://www.mathworks.com/help/releases/R2016b/codeprover/ref/cyclictaskscyclictasks.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/interruptsinterrupts.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/considerenvironmentpointersasunsafestubbedpointersareunsafe.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/considerenvironmentpointersasunsafestubbedpointersareunsafe.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/considerenvironmentpointersasunsafestubbedpointersareunsafe.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/considervolatilequalifieronfieldsconsidervolatilequalifieronfields.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/considervolatilequalifieronfieldsconsidervolatilequalifieronfields.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/considervolatilequalifieronfieldsconsidervolatilequalifieronfields.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/subnormaldetectionmodechecksubnormal.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/subnormaldetectionmodechecksubnormal.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/generatestubsforembeddedcoderlookuptablesstubembeddedcoderlookuptablefunctions.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/generatestubsforembeddedcoderlookuptablesstubembeddedcoderlookuptablefunctions.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/generatestubsforembeddedcoderlookuptablesstubembeddedcoderlookuptablefunctions.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/generatestubsforembeddedcoderlookuptablesstubembeddedcoderlookuptablefunctions.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/preemptableinterrupts.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/nonpreemptabletasks.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/functionbehaviorspecifications.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/submitjobfrompreviouscompilationresults.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/submitjobfrompreviouscompilationresults.html

Updated Options

Option Change More Information
Detect stack pointer dereference
outside scope (-detect-pointer-
escape)

Option now
available
in user
interface.

Coding rule subsets single-
unit-rules and system-
decidable-rules

Subsets
now
available
in the
Polyspace
interface.

These subsets are available for Check
MISRA C:2004 (-misra2), Check MISRA
AC AGC (-misra-ac-agc), and Check
MISRA C:2012 (-misra3)

-check-infinite and -check-nan Option
argument
renamed.

Use warn-first as option argument
instead of warn.

 Verification Setup

3-11

https://www.mathworks.com/help/releases/R2016b/codeprover/ref/detectstackpointerdereferenceoutsidescopedetectpointerescape.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/detectstackpointerdereferenceoutsidescopedetectpointerescape.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/detectstackpointerdereferenceoutsidescopedetectpointerescape.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/checkmisrac2004misra2.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/checkmisrac2004misra2.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/checkmisraacagcmisraacagc.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/checkmisraacagcmisraacagc.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/checkmisrac2012misra3.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/checkmisrac2012misra3.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/checkinfinite.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/checknan.html

Removed Options

Option Status More Information
Green absolute address
checks (-green-absolute-
address-checks)

Error Absolute address usage checks are green
by default. To remove this assumption
and produce an orange check, use the
option -no-assumption-on-
absolute-addresses.

Files and folders to ignore (-
includes-to-ignore)

Error Use the option Do not generate results
for (-do-not-generate-results-
for) to suppress results from headers
and sources in certain files or folders.

Ignore float rounding (-
ignore-float-rounding)

Error Option will be removed in a future
release.

-retype-pointer Error Option will be removed in a future
release.

-retype-int-pointer Error Option will be removed in a future
release.

-lwtm Error Option will be removed in a future
release.

-support-FX-option-results Error Option will be removed in a future
release.

polyspace-vcproj Removed Use polyspace-configure or the
Polyspace Add-In for Visual Studio
instead.

polyspace-automatic-
verification

Warning Binary will be removed in a future
release.

polyspace-verifier Warning Binary will be removed in a future
release.

rte-kernel Warning Binary will be removed in a future
release.

polyspace-remote Warning Binary will be removed in a future
release.

Import folder (-import-dir) Warning Option will be removed in a future
release.

R2016b

3-12

https://www.mathworks.com/help/releases/R2016b/codeprover/ref/absoluteaddressusage.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/noassumptiononabsoluteaddresses.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/noassumptiononabsoluteaddresses.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ug/configuring-polyspace-project-using-visual-studio-project-information.html

Option Status More Information
No automatic stubbing (-no-
automatic-stubbing)

Warning Option will be removed in a future
release.

-easy-setup-preprocess Warning Option will be removed in a future
release.

gui-api Warning Binary will be removed in a future
release.
Use polyspace-comments-import
instead.

Compatibility Considerations

If you use scripts that contain the removed or updated options, change your scripts
accordingly.

 Verification Setup

3-13

Verification Results

Subnormal Float Detection: Identify loss of precision from operations
that lead to subnormal results

In R2016b, the verification detects operations that result in subnormal floating-point
values. The presence of subnormal numbers indicates loss of significant digits. This loss
can accumulate over subsequent operations and eventually result in unexpected values.
Subnormal numbers can also slow down the execution on targets without hardware
support. If you run a Polyspace verification, you can choose to see one of the following:

• Allall operations that lead to subnormal results.
• Only those operations that lead to subnormal results from normal operands.

For instance, the numbers MIN_FLOAT and nextabove(MIN_FLOAT) are normal, but
their difference is subnormal.

For more information, see:

• Subnormal detection mode (-check-subnormal): The option to specify subnormal
detection.

• Subnormal float: The result of subnormal detection.

Local Variable Size Estimation: Find total size of local variables in a
function

In R2016b, you can compute the total size of local variables in a function by using these
two metrics:

• Lower Estimate of Local Variable Size: Total size of local variables taking nested
scopes into account.

If a function has variable definitions in nested scopes, the software computes the total
variable size in each scope and uses whichever total is greatest. For instance, if a
conditional statement has variables definitions, the software computes the total
variable size in each branch, and then uses whichever total is greatest.

• Higher Estimate of Local Variable Size: Total size of allall local variables.

R2016b

3-14

https://www.mathworks.com/help/releases/R2016b/codeprover/ref/subnormaldetectionmodechecksubnormal.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/subnormalfloat.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/lowerestimateoflocalvariablesize.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/higherestimateoflocalvariablesize.html

Changes to coding rule checking

Expanded MISRA C++ Support

The following MISRA C++:2008 rules are now supported.

• 0-1-9: There shall be no dead code.
• 0-1-11: There shall be no unused parameters (named or unnamed) in nonvirtual

functions.
• 0-1-12: There shall be no unused parameters (named or unnamed) in the set of

parameters for a virtual function and allall the functions that override it.
• 0-2-1: An object shall not be assigned to an overlapping object.
• 16-6-1: All uses of the #pragma directive shall be documented.

Updated Specifications

The Polyspace specifications for these rules have been updated.
Standard Rule Change
MISRA C++:2008 2–10–3 The violation is on the second instance of the

duplicate identifier instead of the first.
2–10–4 The violation is on the second instance of the

duplicate identifier instead of the first.
5–0–3 If two types have the same size in the target

configuration, Polyspace does not raise a violation.
5–0–6 If two types have the same size in the target

configuration, Polyspace does not raise a violation.
5–0–8 If two types have the same size in the target

configuration, Polyspace does not raise a violation.
MISRA C:2004 and
MISRA AC AGC

5.3 The violation is on the second instance of the
duplicate identifier instead of the first.

5.4 The violation is on the second instance of the
duplicate identifier instead of the first.

10.1 If two types have the same size in the target
configuration, Polyspace does not raise a violation.

 Verification Results

3-15

https://www.mathworks.com/help/releases/R2016b/codeprover/ug/misra-c-coding-rules-1.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ug/misra-c-coding-rules.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ug/misra-c-coding-rules.html

Standard Rule Change
10.2 If two types have the same size in the target

configuration, Polyspace does not raise a violation.
10.3 If two types have the same size in the target

configuration, Polyspace does not raise a violation.
10.4 If two types have the same size in the target

configuration, Polyspace does not raise a violation.
MISRA C:2012 5.3 The violation is on the second instance of the

duplicate identifier instead of the first.
5.4 The violation is on the second instance of the

duplicate identifier instead of the first.
10.3 If two types have the same size in the target

configuration, Polyspace does not raise a violation.
10.6 If two types have the same size in the target

configuration, Polyspace does not raise a violation.
10.7 If two types have the same size in the target

configuration, Polyspace does not raise a violation.
10.8 If two types have the same size in the target

configuration, Polyspace does not raise a violation.

Metrics for C++ Templates: View code complexity metrics for instances
of C++ templates

In R2016b, you can compute code complexity metrics for C++ templates. If you
instantiate a C++ template function and specify the option Calculate code metrics (-code-
metrics), you now see function metrics for the template in your analysis results.

The metrics appear on the template definition. The software uses the first instance of the
template to calculate the metrics. If you specialize a template, you see separate metrics
for the original template and its specialization.

For more information, see Code Metrics.

R2016b

3-16

https://www.mathworks.com/help/releases/R2016b/codeprover/misra-c2012-directives-and-rules-1.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/calculatecodemetricscodemetrics.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/calculatecodemetricscodemetrics.html
https://www.mathworks.com/help/releases/R2016b/codeprover/metrics-reference.html

Mutual Exclusion Support: View precise ranges for shared variables
protected by critical sections and temporally exclusive tasks

In R2016b, when you check multitasking code for run-time errors, the error checking
uses the protections that you specify. Previously, the software only determined if the
protections were sufficient to prevent concurrent access of shared variables. The run-
time error checking did not use those protections and considered all shared variables as
unprotected. The improved support for protections in R2016b reduces the number of
orange checks in multitasking code.

The following example illustrates the change. For a more detailed tutorial, see Manually
Protect Shared Variables from Concurrent Access.

 Verification Results

3-17

https://www.mathworks.com/help/releases/R2016b/codeprover/ug/model-critical-sections-and-temporally-exclusive-tasks.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ug/model-critical-sections-and-temporally-exclusive-tasks.html

Prior to R2016b R2016b
In the following code, if you specify that
task and interrupt_handler are
temporally exclusive, the shared variable
shared_var is protected from concurrent
access. However, the Overflow check on
the addition shared_var += 2; does not
consider this protection. The check is
orange because the verification considers
that the addition can directly follow the
assignment shared_var = INT_MAX;.

#include <limits.h>
int shared_var;

void inc() {
 /* Orange overflow */
 shared_var += 2;
}

void reset() {
 shared_var = 0;
}

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 reset();
 inc();
 inc();
 }
}

void interrupt() {
 shared_var = INT_MAX;
}

void interrupt_handler() {
 volatile int randomValue = 0;
 while(randomValue) {
 interrupt();
 }

In the following code, the Overflow check
on the addition considers the temporal
exclusion of task and
interrupt_handler. The check is green
because the verification considers that the
addition cannot directly follow the
assignment shared_var = INT_MAX;.
The assignment shared_var=0 takes
place in between the two operations.

#include <limits.h>
int shared_var;

void inc() {
 /* Green overflow */
 shared_var+=2;
}

void reset() {
 shared_var = 0;
}

void task() {
 volatile int randomValue = 0;
 while(randomValue) {
 reset();
 inc();
 inc();
 }
}

void interrupt() {
 shared_var = INT_MAX;
}

void interrupt_handler() {
 volatile int randomValue = 0;
 while(randomValue) {
 interrupt();
 }
}

R2016b

3-18

Prior to R2016b R2016b
}

 void main() {
}

 void main() {
}

If the shared variable is a pointer or an array, this change in behavior does not occur.
Run-time error checking on shared pointers and arrays does not consider the protections.

Compatibility Considerations
If you use protections such as critical sections and temporal exclusion of tasks, you can
see a reduction from previous releases in the number of orange checks.

Improved Embedded Coder Support: View more precise results when
generated code uses lookup tables or large data structures
Lookup Tables

In R2016b, the verification assumes more precise return values for generated functions
that use a lookup table in their body. If your model has Lookup Table blocks, such
functions are generated . Previously, the software assumed full range for the return
values of those functions. To avoid orange checks from this overapproximation, for
certain kinds of lookup tables, the software now assumes that the function return values
are within the bounds of the lookup table. The software makes this assumption only if
the lookup table in the function uses linear interpolation and does not allow
extrapolation. For more information, see Generate stubs for Embedded Coder lookup
tables (-stub-embedded-coder-lookup-table-functions).

If the software does not detect functions that use lookup tables of this kind, you can also
explicitly specify such functions. For instance, if you use a lookup table function in an S-
Function block, the function name might not adhere to the naming convention for lookup
table functions. If the software assumes full range for its return value, you can explicitly
specify that the function uses a lookup table with linear interpolation and no
extrapolation. For more information, see -function-behavior-specifications.

Large Data Structures Accessed Via Pointers

In R2016b, when your code has a large global data structure and a function accesses its
fields via pointers, the verification is more precise than before. Previously, if a function

 Verification Results

3-19

https://www.mathworks.com/help/releases/R2016b/codeprover/ref/generatestubsforembeddedcoderlookuptablesstubembeddedcoderlookuptablefunctions.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/generatestubsforembeddedcoderlookuptablesstubembeddedcoderlookuptablefunctions.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/sfunction.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/sfunction.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/functionbehaviorspecifications.html

modified one field via pointers, in some cases, the verification lost precision on other
fields and assumed full range for their values.

Code generated from models can have large structures because allall inputs to or outputs
from the model are placed in one structure. With this improved precision, you can see
more precise results for generated code in many cases.

Compatibility Considerations

If you run verification on generated code, you can see a reduction from previous releases
in the number of orange checks.

Precise Buffer Manipulation Functions: View more precise results on
complete copying of structures

In R2016b, if your code uses the memcpy, memmove, or bcopy function to copy structures,
you can see fewer orange checks. Previously, if you copied one structure to another with
these functions, the software assumed that each field of the destination structure had
full range of values. The software now considers precise values for the result of the copy.

Assumption for Stubbed Pointers: Review fewer warnings from pointers
coming from external code

In R2016b, the default verification for C code assumes that stubbed pointers coming from
external code are safe to dereference. For instance, the pointer does not have a NULL
value and pointer dereference is within allowed bounds.

Previously, the default verification assumed that stubbed pointers were unsafe to
dereference. For instance, if you dereferenced the pointer return value of a stubbed
function without checking for NULL, the Illegally dereferenced pointer check showed
a warning in orange. With the change in default assumption, orange Illegally
dereferenced pointer checks in your verification results are more likely to have a root
cause within your code.

Compatibility Considerations

If you run verification on a Polyspace project from a previous release, you can see a
reduction in the number of orange checks.

R2016b

3-20

You can also see an increase in the number of gray checks. If your code contains
protections against NULL values of environment pointers, for instance conditions such as
if(ext_ptr!=NULL), a gray check appears on these protections.

To revert to the previous default assumption, use the option Consider environment
pointers as unsafe (-stubbed-pointers-are-unsafe). Alternately, you can individually
change the default assumption on certain pointers only in the Constraint Specification
window. See the description for Initialize Pointer in Constraints.

Assumption for Structures with Volatile Fields: Review fewer warnings
from partly volatile structures

In R2016b, the default verification ignores the volatile qualifier on fields of a
structure. Previously, if a structure had a volatile-qualified field, the verification
considered all fields of the structure as volatile. As a result, the verification assumed that
their values always spanned the full range of their data types. This overapproximation
sometimes caused false warnings in orange from the non-volatile fields.

If you use a structure whose fields represent values read from hardware, add the
volatile qualifier to the structure definition instead of individual field definitions.

Compatibility Considerations

If you run verification on a Polyspace project from a previous release, you can see a
reduction in the number of orange checks. Occasionally, you can also see changes in red
or gray checks. For instance, if the field structInstance.field is volatile, branches of
the condition if(structInstance.field) were previously always reachable. With the
new assumption, depending on the value of structInstance.field, some of the
branches can be unreachable.

To revert to the previous default assumption, use the option Consider volatile qualifier
on fields (-consider-volatile-qualifier-on-fields).

Expected Infinite Loop Detection: Avoid justifying run-time errors on
infinite loops that you introduce deliberately

In R2016b, the verification detects if an infinite loop is intentional. For these infinite
loops, the verification does not produce a red Non-terminating loop error on the loop

 Verification Results

3-21

https://www.mathworks.com/help/releases/R2016b/codeprover/ref/considerenvironmentpointersasunsafestubbedpointersareunsafe.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/considerenvironmentpointersasunsafestubbedpointersareunsafe.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ug/drs-configuration-settings.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/considervolatilequalifieronfieldsconsidervolatilequalifieronfields.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/considervolatilequalifieronfieldsconsidervolatilequalifieronfields.html

statement. If you deliberately introduce infinite loops, for instance, to emulate cyclic
tasks, you do not have to justify red checks. For example, if a loop has a trivial predicate
while(1) and there are no exit statements in the loop body, the verification considers
the loop as intentional.

For more information, see Non-terminating loop.

Compatibility Considerations

If you run verification on a pre-R2016b project, you see a reduction from previous
releases in the number of red Non-terminating loop checks. However, as in previous
releases, any code following the infinite loop shows gray checks. Though the infinite loop
is expected, the verification considers code following the infinite loop as unreachable.

Mapping to Standard Functions: View precise results by mapping
imprecisely analyzed functions to corresponding standard functions

In R2016b, if you encounter imprecisions in analysis of your custom library function, you
can map the function to a standard library function for more precise analysis.

Polyspace Code Prover cannot analyze certain code constructs because of inherent
limitations with static verification. If your custom library function uses one of those
constructs, to avoid missing a run-time error, the verification assumes all possible results
from the function call. To avoid orange checks from this overapproximation, you can map
your custom library function to a standard library function. Although the software does
not analyze the body of your library function, in the various call sites, the software
emulates your function behavior more precisely. For instance, the software assumes a
more precise range for the function return value. The reason for this precise analysis is
that the software models effects of standard library functions extremely precisely.

For instance:

• If you have an implementation of a trigonometric function and the software assumes
full range for the return value, map your implementation to the corresponding
standard library trigonometric function.

• If you have a function that copies contents of one memory location to another and the
software assumes that the destination location is still uninitialized, map your
function to the memcpy function.

R2016b

3-22

https://www.mathworks.com/help/releases/R2016b/codeprover/ref/nonterminatingloop.html

You can map to only certain standard library functions from math.h and copying
functions such as memcpy. Additionally, you can map your functions to some internal
Polyspace functions for more precise analysis. For more information, see -function-
behavior-specifications.

 Verification Results

3-23

https://www.mathworks.com/help/releases/R2016b/codeprover/ref/functionbehaviorspecifications.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ref/functionbehaviorspecifications.html

Reviewing Results

Interactive Graphical Display: Click graphs on Dashboard to filter
results

In R2016b, you can narrow down the scope of your review by using a graphical display of
analysis results. Previously you used the graphs to obtain an overview of the analysis
results and determine which results to focus on. Now you can also select elements in the
graphs to view only those results that you want to focus on. To see all results again, clear
your filters in one click.

To filter results, use the following graphs:

• Check distribution: If you click a colored region on this pie chart, the Results List
pane shows checks of that color only.

• Top 5 coding rule violations: If you click a column corresponding to a rule, the
Results List pane shows violations of that rule only.

• Top 5 orange sources: If you click a column corresponding to an orange source, the
Results List pane shows orange checks caused by that source only.

For more information, see Filter and Group Results.

Float Range Display: View float variables with narrow ranges more
clearly

In R2016b, the tooltips on float variables show an improved display of the variable
ranges. For instance:

• If the lower and upper bounds of a float variable are close, the tooltip displays as
many digits as required to distinguish between them.

• The tooltips clearly indicate which values are shown with rounding. For instance, the
value 1.0 does not involve rounding but 1.2345... shows a variable that is
displayed with rounding towards zero.

When rounded, at least 5 significant digits are displayed.

For more information, see Source.

R2016b

3-24

https://www.mathworks.com/help/releases/R2016b/codeprover/ug/filter-and-group-results.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ug/result-views-in-polyspace-user-interface.html#buqgvpv-3

Event History for Coding Rules: Navigate easily between two locations
in code that together cause a rule violation
In R2016b, for certain coding rules, the Result Details pane shows previous events
causing the rule violation. You can click an event and navigate to the corresponding
location in the source code.

This event history is shown for those rules which are related to more than one location in
the code. For instance, the event history appears for the following rules:

• MISRA C:2004 Rule 5.2: Identifiers in an inner scope shall not use the same name as
an identifier in an outer scope, and therefore hide that identifier.

• MISRA C:2012 Rule 5.1: External identifiers shall be distinct.
• MISRA C++ Rule 2-10-1: Different identifiers shall be typographically unambiguous.
• JSF® C++ Rule 139: External objects will not be declared in more than one file.

Subcheck Display for Standard Library Routines: Determine easily from
visual inspection which subcheck failed
The Invalid use of standard library routine check consists of multiple subchecks. In
R2016b, you can determine visually from the Result Details pane which subchecks
failed.

• If a subcheck passes, it is marked with a .
• If a subcheck fails in all the cases that the verification considers, it is marked with a

.
• If a subcheck fails only in some of the cases, it is marked with a .

For instance, in the following example, the first subcheck passed but the second one
failed.

 Reviewing Results

3-25

https://www.mathworks.com/help/releases/R2016b/codeprover/ref/misrac2012rule5.1.html

In the following example, the subchecks on the first argument passed but the first
subcheck on the second argument failed sometimes.

Results from Macros: Coding rule violations highlighted on macro
definitions instead of macro instances

When you run coding rules checking, violations from macro definitions can propagate
throughout your code causing many results. In R2016b, coding rule violations caused by
a macro are now highlighted on the macro definition. This change reduces the number of
coding rule violations with the same root cause, simplifying your review process.

Verification Objectives in Eclipse: Create review scopes to focus your
review

From the Eclipse plugin, you can now create custom review scopes. Review scopes filter
your results to only the run-time checks, coding rules, or code metrics that you want to
see. For more information, see Limit Display of Results.

R2016b

3-26

https://www.mathworks.com/help/releases/R2016b/codeprover/ug/review-results.html#bvf293j-1

Filtered Report: Reuse result filters for generated report

In R2016b, if you apply filters to your results, you can reuse those filters for the
generated report. For instance, you can use filters to view only the following subset of
results on the Results List pane and then reuse those filters for the report.

• View only critical checks (red, gray, and critical orange) and create a report with
those checks only.

• View only new results found since the last analysis and create a report with the new
results only.

• View only code metrics that exceed specified thresholds and create a report with those
metrics only.

On the Results List pane, you can apply complicated filtering criteria to show only the
results that are most meaningful to you. You can reuse these criteria for your generated
report and show only the results that you want the report reviewer to focus on. For more
information on the filters you can use, see Filter and Group Results.

The report shows which filters you have applied. Another person reviewing your report
can see your filtering criteria.

Results Export: Export results to text file for computing graphs and
statistics

In R2016b, you can export your results to a tab delimited text file. You can parse the text
file by using MATLAB or Excel® and generate graphs or statistics about your results
that you cannot readily obtain from the user interface. For instance, for each check type
(Division by zero, Overflow), you can calculate how many checks are red, orange, or
green.

For more information, see Export Results to Text File.

Coding Rule Graphs in Report: View breakdown of coding rules
violations by rule number and file

In R2016b, if you choose to report coding rule violations, the report contains two new
graphs.

 Reviewing Results

3-27

https://www.mathworks.com/help/releases/R2016b/codeprover/ug/review-orange-checks_br2ln4c-1.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ug/filter-and-group-results.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ug/export-results-to-text-file.html

• The first graph shows the number of coding rule violations broken down by file.

• The second graph shows the number of violations broken down by rule number.

Constraints in Report: Add comments about external constraints and
view comments in report

In R2016b, when you specify external constraints for verification and add comments in
the Constraint Specification window, the comments appear in the generated report.
Another person reviewing your report can see your comments. You can use the comments
to provide explanations for your constraints.

The constraints, along with your comments, appear in the report appendix that lists your
verification options.

For more information, see:

• Constraints

R2016b

3-28

https://www.mathworks.com/help/releases/R2016b/codeprover/ug/drs-configuration-settings.html

• Generate Report

English Reports in Non-English Locales: Generate English reports on
operating systems with a different language
In R2016b, even if your operating system has a display language (Windows) or locale
(Linux) such as Japanese or Korean, you can still generate English reports. See Generate
Report After Verification.

Improved PDF report generation
In R2016b, the generation of PDF reports is improved.

• The report generation is faster. For large results, the report generation is much less
likely to cause out-of-memory errors.

• The reports use an improved visual display.

Change in report template location
The location of the report template files has changed to matlabroot/toolbox/
polyspace/psrptgen/templates. Here, matlabroot is the MATLAB installation
folder.

If you use the report templates provided by Polyspace, the change does not impact you. If
you use MATLAB Report Generator™ to modify the Polyspace report templates, you can
open the templates from this new location.

Changes in Polyspace User Interface
The following table lists minor changes to the user interface including new pane names
and new icons.

• Results List — Window showing list of results, previously called Results
Summary.

•
 — Button to remove items in the configuration or projects.

• The icons on the Results List pane have been rearranged.

In R2016a, the icons were arranged as follows.

 Reviewing Results

3-29

https://www.mathworks.com/help/releases/R2016b/codeprover/ug/generate-report.html
https://www.mathworks.com/help/releases/R2016b/codeprover/ug/generate-report.html#buoti71
https://www.mathworks.com/help/releases/R2016b/codeprover/ug/generate-report.html#buoti71

In R2016b, the same icons are arranged as follows.

R2016b

3-30

R2016a

Version: 9.5

New Features

Bug Fixes

Compatibility Considerations

4

Verification Setup

Files to Review: Generate results for only specified files and folders

In R2016a, you have greater control over the files on which you want analysis results.
The default project configuration displays coding rule violations and code metrics on the
set of files that are likely to be most relevant to you. You can add files or folders to this
set based on your requirements.

For instance, by default, coding rule violations and code metrics are generated on header
files that are located in the same folder as the source files. Often, other header files
belong to a third-party library. Though these header files are required for a precise
analysis, you are not interested in reviewing findings in those headers. Therefore, by
default, results are not generated for those headers. If you are interested in certain
headers from third-party libraries, you can add those headers to the subset on which
results are generated.

For more information, see:

• Generate results for sources and (-generate-results-for)
• Do not generate results for (-do-not-generate-results-for)

Compatibility Considerations

In R2016a, by default, coding rule violations and code metrics are not generated for
headers unless they are in the same location as source files. Previously, if you ran
verification at the command line, by default, results were generated for all headers.

Due to the change in default behavior, if you rerun verification on a pre-R2016a project
without changing the options, you can lose review comments on findings in some header
files. To avoid losing the comments, set the option Generate results for sources and (-
generate-results-for) to all-headers.

Faster MISRA Rule Checking: Check coding rules more quickly and
efficiently

In R2016a, you can use two predefined subsets to perform a quicker and more efficient
check for coding rule violations. The new subsets turn on rules that have the same scope.

R2016a

4-2

https://www.mathworks.com/help/releases/R2016a/codeprover/ref/generateresultsforsourcesandgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/generateresultsforsourcesandgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/generateresultsforsourcesandgenerateresultsfor.html

• single-unit-rules — Check rules that apply only to single translation units.
• system-decidable-rules — Check rules in the single-unit-rules subset and

some rules that apply to the collective set of program files. The additional rules can be
checked only at the integration level because the rules involve more than one
translation unit.

Polyspace finds these subsets of rules in the early phases of the analysis. If your project
is large, before checking all rules, you can check these subsets of rules for a preliminary
analysis.

For more information, see Coding Rule Subsets Checked Early in Analysis.

S-Function Analysis: Launch analysis of S-Function code from Simulink

With the Polyspace plug-in for Simulink, you can now start a Polyspace verification on S-
Functions directly from an S-Function block.

To analyze an S-Function, right-click the S-Function block and select Polyspace >
Verify S-Function. If the S-Function occurs in your model multiple times, you can
choose to analyze all instances of the S-Function by verifying all signal range inputs, or
just a single instance of the S-Function by verifying the specific signal ranges for that
block.

Polyspace Metrics Tomcat Upgrade: Use upgraded default Tomcat
server or custom Tomcat version

Polyspace Metrics now uses Tomcat 8.0.22 to run the Polyspace Metrics web interface.

If you want to use your own version of Tomcat, you can now specify a custom Tomcat
server in the daemon configuration file. To add your custom tomcat web server, add the
following line to the daemon configuration file.

tomcat_install_dir = <path/to/tomcat>

The daemon configuration file is located in:

• Windows — \%APPDATA%\Polyspace_RLDatas\polyspace.conf
• Linux — /etc/Polyspace/polyspace.conf

 Verification Setup

4-3

https://www.mathworks.com/help/releases/R2016a/codeprover/ug/coding-rules-checked-earlier-in-analysis.html
https://www.mathworks.com/help/releases/R2016a/simulink/slref/sfunction.html

Project Language Flexibility: Change your project language at any time

Projects in the Polyspace interface are no longer fixed to C or to C++. When you create a
project, you can add any file to the project. After you add files, select the language for
your analysis using the Source code language (-lang) option. If you add or change the
files in your project, you can change the language to reflect the most suitable analysis
type.

Many options that were C only or C++ only are now available for both languages. To see
which analysis options have changed, see “Changes in analysis options” on page 4-9.

External Constraint on Pointers: Specify certain initialization with full
range for pointer arguments and return values of stubbed functions

In R2016a, if a stubbed function in your code has a pointer argument or a return value,
you can specify certain constraints on the pointer outside your code. Using the
constraints, you can reduce the number of Non-initialized local variable checks. A
function is stubbed if you do not provide the function definition or if you specify the
function name for the option Functions to stub (-functions-to-stub). For instance, if
you declare a function func and do not provide the function definition, func is stubbed.

int* func (int* ptr);

You can specify the new external constraints for the pointer argument and the pointer
return value of func.

You can specify one of the following:

• The pointer points to a non-array variable and the variable is initialized.

The Init Allocated column in the constraint specification file supports a new entry
SINGLE_CERTAIN_WRITE that allows you to specify this constraint.

• The pointer points to an array and all elements of the array are initialized.

The Init Allocated column in the constraint specification file supports a new entry
MULTI_CERTAIN_WRITE that allows you to specify this constraint.

The following table illustrates the change.

R2016a

4-4

https://www.mathworks.com/help/releases/R2016a/codeprover/ref/sourcecodelanguagelang.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/noninitializedlocalvariable.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/functionstostubfunctionstostub.html

Prior to R2016a R2016a
Without constraints, Polyspace assumes
that x in bar and and bar_array are
potentially noninitialized when you read
them. You cannot specify that the functions
foo and foo_array initialize x with full-
range values.

#define SIZE 5
void foo(int *ptr);

int bar (void) {
 int x;
 foo(&x);
 return x;
}

void foo_array(int *ptr);
void display(int val);

void bar_array(void) {
 int x[SIZE],sum=0;
 foo_array(x);
 for(int i=0; i<SIZE; i++)
 display(x[i]);
}

If you specify the following constraints in
the Init Allocated column, Polyspace
considers that x in bar and bar_array are
initialized.

• foo: Specify SINGLE_CERTAIN_WRITE
for the argument of foo. In other words,
foo writes a value to *ptr.

• foo_array: Specify
MULTI_CERTAIN_WRITE for the
argument of foo_array. In other
words, ptr points to an array and
foo_array writes a value to the array
elements.

#define SIZE 5
void foo(int *ptr);

int bar (void) {
 int x;
 foo(&x);
 return x;
}

void foo_array(int *ptr);
void display(int val);

void bar_array(void) {
 int x[SIZE],sum=0;
 foo_array(x);
 for(int i=0; i<SIZE; i++)
 display(x[i]);
}

For more information, see Constraints.

If your project uses a constraint specification file from a previous release, you do not see
any change in the verification results. If you generate a constraint specification file, by
default, pointer arguments of stubbed functions are constrained to point to an array that

 Verification Setup

4-5

https://www.mathworks.com/help/releases/R2016a/codeprover/ug/drs-configuration-settings.html

is initialized. Applying the default constraint specification file can reduce the number of
orange Non-initialized local variable checks.

Source Code Search: Search large applications more quickly

In R2016a, search results are produced more quickly. If you search for a string in a large
application, it takes less time for search results to appear.

You can search for a string either by entering the search string in the box on the Search
pane, or by right-clicking a word in your code on the Source pane, and then selecting a
search option.

Polyspace TargetLink plug-in supports data from structures

The Polyspace plug-in for TargetLink® can now import data from structures in the
constraint specifications (formerly called DRS) for your analysis.

Polyspace Eclipse plug-in results location moved

When you analyze projects using the Polyspace plug-in for Eclipse, your results used to
be stored inside your Eclipse project under eclipse project folder\polyspace. For
new Eclipse projects, Polyspace now stores results in the Polyspace Workspace under
Polyspace_Workspace\EclipseProjects\Eclipse Project Name, where
Polyspace_Workspace is the default project location specified in your Polyspace
Interface preferences. For more information, see Results Location.

Improvements in automatic project creation from build command

In R2016a, automatic project creation from build command is improved.

• If you trace your build command and create a Polyspace project from the command
line, you do not have to specify a product name or project language. You can open the
project in Polyspace Bug Finder™ or Polyspace Code Prover. The project language is
determined by using the following rules:

• If all your files are compiled as C, as C++03, or C++11, the corresponding language
is assigned to the project.

R2016a

4-6

https://www.mathworks.com/help/releases/R2016a/codeprover/ug/verifying-code-in-the-eclipse-ide.html#bu837cn

Language Options Set in Project
C Source code language: C
C++03 Source code language: CPP
C++11 Source code language: CPP

C++11 Extensions: On
• If some files are compiled as C and the remaining files as C++03 or C++11, the

Source code language option is set to cpp.

The option C++11 Extensions is also enabled.

For more information, see Source code language (-lang) and C++11 Extensions (-
cpp11-extensions).

Previously, you specified the product name by using options -bug-finder or -code-
prover. If you did not specify a project language and your source code consisted of
both .c and .cpp files, the language cpp was assigned to the project. The options -
bug-finder and -code-prover have been removed.

For more information, see Create Project Automatically.
• If header files in your project contain constructs that are not supported in Polyspace

Code Prover, a compilation error occurs. In R2016a, when you trace your build,
Polyspace detects such header files and does not add them to your project. Later,
when you run verification on the project, you do not face compilation errors because of
unsupported constructs in header files.

• The support for IAR compilers has improved. All variations of IAR compilers are now
supported for automatic project creation from build command.

Improvements in checking of previously supported MISRA C rules

In R2016a, the following changes have been made in checking of previously supported
MISRA C rules.

 Verification Setup

4-7

https://www.mathworks.com/help/releases/R2016a/codeprover/ref/sourcecodelanguagelang.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/c11extensionscpp11extension.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/c11extensionscpp11extension.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ug/create-polyspace-project-from-build-system.html

MISRA C:2004 Rules
Rule Description Improvement
MISRA C:2004 Rule
10.3

The value of a complex
expression of integer
type may only be cast
to a type that is
narrower and of the
same signedness as
the underlying type of
the expression.

The rule checker no longer raises a
violation of this rule if an expression
with a Boolean result is cast to a type
that is also effectively Boolean.

For instance, in your code, you define
a type myBool using a typedef and
cast the result of (a && b) to
myBool. If you specify to Polyspace
that myBool is effectively Boolean,
the rule checker does not consider this
cast as a violation of rule 10.3. For
more information on how to specify
effectively Boolean types, see
Effective boolean types (-boolean-
types).

MISRA C:2004 Rule
12.2

The value of an
expression shall be the
same under any order
of evaluation that the
standard permits.

The rule checker no longer flags
expressions with the comma operator
that can be evaluated in only one
order.

For instance, the statement ans =
(val++, val++) does not violate
this rule.

MISRA C:2012 Rules
Rule Description Improvement
MISRA C:2012 Rule
13.2

The value of an
expression and its
persistent side effects
shall be the same
under all permitted
evaluation orders.

The rule checker no longer flags
expressions with the comma operator
that can be evaluated in only one
order.

For instance, the statement ans =
(val++, val++) does not violate
this rule.

R2016a

4-8

https://www.mathworks.com/help/releases/R2016a/codeprover/ref/effectivebooleantypesbooleantypes.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/effectivebooleantypesbooleantypes.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/misrac2012rule13.2.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/misrac2012rule13.2.html

Variables with constraints not counted as orange sources

In R2016a, once you constrain certain variables outside your code, those variables do not
appear as possible causes of orange checks on the Orange Sources pane.

This pane lists the variables that you can constrain outside your code to reduce orange
checks.

• Previously, the pane listed variables even after you had constrained them, with the
assumption that you might constrain them further.

• Starting in R2016a, Polyspace assumes that once you constrain variables to match
real-world values, you will not constrain them further.

Therefore, variables already constrained are not shown on the Orange Sources pane.

For more information on constraining variables using the Orange Sources pane, see
Create Constraint Template After Analysis.

Changes in analysis options

In R2016a, the following options have been added, changed, or removed.

 Verification Setup

4-9

https://www.mathworks.com/help/releases/R2016a/codeprover/ug/specify-constraints.html#buofj4n

New Options

Option Description
Generate results for sources and
(-generate-results-for)

Specify files on which you want analysis results.

Do not generate results for (-do-
not-generate-results-for)

Specify files on which you do not want analysis
results.

Allow non finite floats (-allow-
non-finite-floats)

Enable a verification mode that incorporates
infinities and NaNs.

Float rounding mode (-float-
rounding-mode)

Assume all rounding modes and extended precision
when determining the results of floating point
arithmetic.

-check-infinite Specify how to handle floating point operations that
result in infinity.

-check-nan Specify how to handle floating point operations that
result in NaN.

-no-assumption-on-
absolute-addresses

Make Absolute address usage checks orange by
default.

R2016a

4-10

https://www.mathworks.com/help/releases/R2016a/codeprover/ref/generateresultsforsourcesandgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/generateresultsforsourcesandgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/allownonfinitefloatsallownonfinitefloats.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/allownonfinitefloatsallownonfinitefloats.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/floatroundingmodefloatroundingmode.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/floatroundingmodefloatroundingmode.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/checkinfinite.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/checknan.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/noassumptiononabsoluteaddresses.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/noassumptiononabsoluteaddresses.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/absoluteaddressusage.html

Updated Options

Option Change More
Information

Source code language (-lang) Added to Polyspace Interface Select your
project
language to set
compilation
rules and
enable
language
specific
analysis
options.

Dialect (-dialect) Unified dialects for C and C++
projects. All projects can use any
dialect option.

Target processor type (-target) Targets i386 and x86_64 now
allow any alignment value.

Sfr type support (-sfr-types) Allowed for both C and C++
Pack alignment value (-pack-
alignment-value)

Allowed for both C and C++

Import folder (-import-dir) Allowed for both C and C++
Ignore pragma pack directives (-
ignore-pragma-pack)

Allowed for both C and C++

Division round down (-div-
round-down)

Allowed for both C and C++

 Verification Setup

4-11

https://www.mathworks.com/help/releases/R2016a/codeprover/ref/sourcecodelanguagelang.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/dialectdialect.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/targetprocessortypetarget.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/sfrtypesupportsfrtypes.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/packalignmentvaluepackalignmentvalue.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/packalignmentvaluepackalignmentvalue.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/importfolderimportdir.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/ignorepragmapackdirectivesignorepragmapack.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/ignorepragmapackdirectivesignorepragmapack.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/divisionrounddowndivrounddown.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/divisionrounddowndivrounddown.html

Removed Options

Option Status More Information
Green absolute address
checks (-green-absolute-
address-checks)

Warning Absolute address usage checks are green
by default. To remove this assumption
and produce an orange check, use the
option -no-assumption-on-
absolute-addresses.

Files and folders to ignore (-
includes-to-ignore)

Warning Use the option Do not generate results
for (-do-not-generate-results-
for) to suppress results from headers
and sources in certain files or folders.

Ignore float rounding (-
ignore-float-rounding)

Warning Option will be removed in a future
release.

-retype-pointer Warning Option will be removed in a future
release.

-retype-int-pointer Warning Option will be removed in a future
release.

-lwtm Warning Option will be removed in a future
release.

-support-FX-option-results Warning Option will be removed in a future
release.

polyspace-vcproj Error Binary has been removed.

Compatibility Considerations

If you use scripts that contain the removed or updated options, change your scripts
accordingly.

R2016a

4-12

https://www.mathworks.com/help/releases/R2016a/codeprover/ref/absoluteaddressusage.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/noassumptiononabsoluteaddresses.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/noassumptiononabsoluteaddresses.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/donotgenerateresultsfordonotgenerateresultsfor.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/donotgenerateresultsfordonotgenerateresultsfor.html

Verification Results

Floating-Point Support: Propagate ranges more precisely for long
double variables and enable verification mode to incorporate infinities
and NaNs

In R2016a, there are the following improvements on analysis of code involving floating-
point variables.

Long Doubles

If your code contains computations involving long double variables, you can see fewer
orange checks resulting from overapproximation. Previously, Polyspace assumed full-
range value for long double variables, irrespective of the actual values assigned to
them. This assumption led to orange checks that indicated potential numerical and other
errors in computations involving long double variables.

Polyspace now propagates ranges more precisely for long double variables. For
information on the number of bits that Polyspace uses for computations involving long
double variables, see Target processor type (-target).

Nonfinites in floating-point arithmetic

Polyspace verification supports nonfinite results such as infinities and NaNs from
computations involving floating-point variables. Using the option Allow non finite floats
(-allow-non-finite-floats), you can enable a verification mode that incorporates
infinities and NaNs.

In this mode, Polyspace assumes that:

• Floating-point operations can produce results such as infinities and NaNs.

Using options -check-infinite and -check-nan, you can choose to highlight
operations that produce nonfinite results and stop the execution paths where the
nonfinite results occur.

• Floating-point variables with unknown values, such as volatile variables and
return values of stubbed functions, can be infinite or NaN.

The following table illustrates the change.

 Verification Results

4-13

https://www.mathworks.com/help/releases/R2016a/codeprover/ref/targetprocessortypetarget.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/allownonfinitefloatsallownonfinitefloats.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/allownonfinitefloatsallownonfinitefloats.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/checkinfinite.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/checknan.html

Prior to R2016a R2016a
In the following code, Polyspace produces a
Division by zero error and stops
verification.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

In the following code, if you specify the
option Allow non finite floats, Polyspace
does not check for a Division by zero
error.

double func(void) {
 double x=1.0/0.0;
 double y=1.0/x;
 double z=x-x;
 return z;
}

The verification assumes that dividing by
zero results in:

• Value of x equal to Inf
• Value of y equal to 0.0
• Value of z equal to NaN

In your verification results in the Polyspace
user interface, if you place your cursor on y
and z, you can see the nonfinite values Inf
and NaN respectively in the tooltip.

Rounding modes

Polyspace supports verification that considers all possible rounding modes when
rounding the results of floating point arithmetic. Using the option Float rounding mode
(-float-rounding-mode), you can enable a verification mode that allows these forms of
rounding: round-to-nearest, round-towards-zero, round-towards-positive-infinity and
round-towards-negative-infinity. The default rounding mode is round-to-nearest only.

Previously, the default verification assumed all rounding modes to determine the results
of floating-point arithmetic. The verification used the round-to-nearest mode only to
determine if an Overflow occurs.

The following table illustrates the change.

R2016a

4-14

https://www.mathworks.com/help/releases/R2016a/codeprover/ref/floatroundingmodefloatroundingmode.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/floatroundingmodefloatroundingmode.html

Prior to R2016a R2016a
In the following code, Polyspace produces a
green Overflow check because the
addition does not overflow if the result is
rounded in to-nearest mode.

#include <float.h>

void func(void) {
 double base = DBL_MAX;
 double acc = 1.247400193459199882
285232945648024103792
1570377722e+291;

 base = acc + base;
}

In the following code, if you specify all for
the option Float rounding mode,
Polyspace produces an orange Overflow
check because the addition overflows if the
result is rounded towards positive infinity.

#include <float.h>

void func(void) {
 double base = DBL_MAX;
 double acc = 1.247400193459199882
285232945648024103792
1570377722e+291;

 base = acc + base;
}

Absolute address usage valid by default

In R2016a, the Absolute address usage check is considered valid and therefore green by
default. If you assign an absolute address to a pointer in your code, the verification
assumes that:

• The address is valid.
• The type of the pointer to which you assign the address determines the initial value

stored in the address.

If you assign the address to an int* pointer, the memory zone that the address points
to is initialized with an int value. The value can be anything that is allowed for the
data type int.

Previously, the Absolute address usage check was considered possibly invalid and
therefore orange by default. You either justified the checks or turned them green by
using the option Green absolute address checks (-green-absolute-address-
checks on command line).

 Verification Results

4-15

https://www.mathworks.com/help/releases/R2016a/codeprover/ref/absoluteaddressusage.html

Compatibility Considerations

If the code in your project uses absolute addresses, you see a decrease in the number of
orange checks from previous releases of the software. To turn the check orange by default
for each absolute address usage, use the command-line option -no-assumption-on-
absolute-addresses. To use a command-line option in the user interface, enter the
option in the Other field.

Run-time checks renamed

In R2016a, the following checks have been renamed. The new names state the error in
the code instead of what the check looks for.
Old Name New Name
Absolute address Absolute address usage
C++ specific checks Invalid C++ specific operations
Exception handling Uncaught exception
Function Returns a Value Function not returning value
Initialized Return Value Return value not initialized
Non-null this-pointer in
method

Null this-pointer calling method

Object Oriented Programming Incorrect object oriented programming
Shift operations Invalid shift operations

R2016a

4-16

https://www.mathworks.com/help/releases/R2016a/codeprover/ref/noassumptiononabsoluteaddresses.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/noassumptiononabsoluteaddresses.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/other.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/absoluteaddressusage.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/invalidcspecificoperations.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/uncaughtexception.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/functionnotreturningvalue.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/returnvaluenotinitialized.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/nullthispointercallingmethod.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/incorrectobjectorientedprogramming.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ref/invalidshiftoperations.html

Reviewing Results

Autocompletion for Review Comments: Partially type previous comment
to select complete comment

In R2016a, on the Results Summary or Result Details pane, if you start typing a
review comment that you have previously entered, a drop-down list shows the previous
entry. Select the previous comment from this list instead of retyping the comment.

If you want the autocompletion to be case sensitive, select Tools > Preferences. On the
Miscellaneous tab, select Autocomplete on Results Summary or Details is case
sensitive.

Default Layouts: Switch easily between project setup and results review
in user interface

In R2016a, you have two default layouts of panes in the Polyspace user interface, one for
project setup and another for results review.

When setting up your projects, select Window > Reset Layout > Project Setup. When
reviewing results, select Window > Reset Layout > Results Review.

For more information, see Organize Layout of Polyspace User Interface.

Persistent Filter States: Apply filters once and view filtered results
across multiple runs

In R2016a, if you apply a set of filters to your verification results and rerun verification
on the project module, your filters are also applied to the new results. You can specify
your filters once and suppress results that are not relevant for you across multiple runs.

The Results Summary pane shows the number of results filtered from the display. If
you place your cursor on this number, you can see the applied filters.

 Reviewing Results

4-17

https://www.mathworks.com/help/releases/R2016a/codeprover/ug/organize-layout-of-polyspace-user-interface.html

For instance, in the image, you can see that the following filters have been applied:

• The Checks & Rules filter to suppress code metrics and global variables.
•

The filter to suppress results found in a previous verification.
• Filters on the Information and Check columns.

For more information, see Filter and Group Results.

Updated Polyspace Metrics Interface: View summary of project and
metrics
You can now view project-level metric summaries from the main Polyspace Metrics page
using one of the following methods:

• On the Projects tab, roll your mouse over the list of projects to open a window
displaying a summary of the project and project metrics.

• On the Projects or Runs tab, right-click the column headers to add new columns to
the table. new columns you can add include Coding Rules, Bug-Finder Checks, Code
Metrics, and Review Progress.

Improved Result Display for File-by-File Verification: View combined
summary of results for all files in user interface
In R2016a, if you perform a file-by-file verification, you can see a summary of results for
all files on the Dashboard pane. You can open the results for each file directly from this
summary table. Previously, you obtained this synthesis in an external html file.

For more information, see Run File-by-File Local Verification.

R2016a

4-18

https://www.mathworks.com/help/releases/R2016a/codeprover/ug/filter-results.html
https://www.mathworks.com/help/releases/R2016a/codeprover/ug/run-file-by-file-verification-on-user-interface.html

Simplified Variable Access: View task names instead of aliases

In R2016a, on the Variable Access pane, in the Written by task and Read by task
columns, you see the task names. Previously, the columns contained aliases such as t1,
t2, t3, ... You viewed the task names using a legend for the aliases.

 Reviewing Results

4-19

R2015b

Version: 9.4

New Features

Bug Fixes

Compatibility Considerations

5

Verification Setup

Option to Suppress Non-initialization Checks: Customize verification by
suppressing non-initialization checks

In R2015b, you can use an analysis option to turn off the checks for non-initialization. If
you turn on this option, Polyspace assumes that, at declaration:

• Variables have full-range of values allowed by their type.
• Pointers can be NULL-valued or point to a memory block at an unknown offset.

When you use this option, the following checks are turned off:

• Non-initialized local variable: Local variable is not initialized before being read.
• Non-initialized variable: Variable other than local variable is not initialized before

being read.
• Non-initialized pointer: Pointer is not initialized before being read.
• Return value not initialized: C function does not return value when expected.

For more information, see Disable checks for non-initialization (C/C++).

Autodetection of Multitasking Primitives: Analyze source code with
multitasking primitives from POSIX or VxWorks without manual setup

If you use POSIX® or VxWorks to perform multitasking, Polyspace can now interpret
your multitasking code without having to change your code or manually set multiple
configuration options.

To turn on automatic detection, select the analysis option Multitasking > Enable
automatic concurrency detection. Polyspace detects thread creation and critical
sections from supported multitasking functions.

Functions Polyspace can interpret:

POSIX

• pthread_create

R2015b

5-2

https://www.mathworks.com/help/releases/R2015b/codeprover/ref/noninitializedlocalvariable.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/noninitializedvariable.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/noninitializedpointer.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/returnvaluenotinitialized.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/disable-checks-for-non-initialization.html

• pthread_mutex_lock
• pthread_mutex_unlock

VxWorks

• taskSpawn
• semTake
• semGive

For more information, see Enable automatic concurrency detection (C/C++).

Microsoft Visual C++ 2013 Support: Analyze code developed in
Microsoft Visual C++ 2013

You can analyze code developed in the Microsoft Visual C++ 2013 dialect.

To analyze code compiled with Microsoft Visual C++ 2013, set your dialect to
visual12.0. If you specify the dialect, Polyspace allows language extensions specific to
Microsoft Visual C++ 2013. Otherwise, it produces a compilation error if you use those
extensions. For more information, see Dialect (C/C++) or Dialect (C++).

GNU 4.9 and Clang 3.5 Support: Analyze code compiled with GCC 4.9
or Clang 3.5

Polyspace now supports the GNU 4.9 and Clang 3.5 dialects for C and C++ projects.

To analyze code compiled with one of these dialects, set the Target & Compiler >
Dialect option to gnu4.9 or clang3.5.

For more information, see Dialect (C/C++) or Dialect (C++).

Improvements in automatic project creation from build command

In R2015b, automatic project creation from build command is improved.

• If you build your source code from the Cygwin™ environment (using either a 32 or 64-
bit installation), Polyspace can trace your build and create a Polyspace project or
options file.

 Verification Setup

5-3

https://www.mathworks.com/help/releases/R2015b/codeprover/ref/enable-automatic-concurrency-detection.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/dialect.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/dialect-1.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/dialect.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/dialect-1.html

• Support for the following compilers has improved:

• Texas Instruments™ C2000 compiler

This compiler is available with Code Composer Studio™.
• Cosmic HC08 C compiler
• MPLAB XC8 C Compiler

• With certain compilers, the speed of tracing your build command has improved. The
software now stores build information in the system temporary folder, thereby
allowing faster access during the build.

If you still encounter a slow build, use the advanced option -cache-path ./
ps_cache when tracing your build. For more information, see Slow Build Process
When Polyspace Traces the Build.

• If the software detects target settings that correspond to a standard processor type, it
assigns that standard target processor type to your project. The target processor type
defines the size of fundamental data types and the endianness of the target machine.
For more information, see Target processor type (C/C++).

Previously, when you created a project from your build command, the software
assigned a custom target processor type. Although you saw the processor type in the
form of an option such as -custom-target true,
8,2,4,-1,4,8,4,8,8,4,8,1,little,unsigned_int,int,unsigned_short,
you could not identify easily how many bits were associated with each fundamental
type. With this enhancement, when the software assigns a processor type, you can
identify the number of bits for each type. Click the Edit button for the option Target
processor type.

• Automatic project creation uses a configuration file written for specific compilers. If
your compiler is not supported, you can adapt one of the existing configuration files
for your compiler. The configuration file, written in XML, is now simplified with some
new elements, macros and attributes.

• The preprocess_options_list element supports a new $(OUTPUT_FILE)
macro when the compiler does not allow sending the preprocessed file to the
standard output.

• A new preprocessed_output_file element allows the preprocessed file name
to be adapted from the source file name.

R2015b

5-4

https://www.mathworks.com/help/releases/R2015b/codeprover/ug/slow-build-process-when-tracing-builds.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/slow-build-process-when-tracing-builds.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/target-processor-type.html

• The semantic_options element supports a new isPrefix attribute. This
attribute provides a shortcut to specify multiple semantic options that begin with
the same prefix.

• The semantic_options element supports a new numArgs attribute. This
attribute provides a shortcut to specify semantic options that take one or more
arguments.

For more information, see Compiler Not Supported for Project Creation from Build
Systems.

• Sometimes, the build command returns a non-zero status even when the command
succeeds. The non-zero status can result from warnings in the build process. However,
Polyspace does not trace the build and create a Polyspace project. You can now use an
option -allow-build-error to create a Polyspace project even if the build command
returns an exit status or error level different from zero. This option helps you
understand the error in the build process.

For more information, see -option value arguments of polyspaceConfigure.

Start Page: Get quickly familiar with Polyspace Code Prover

In R2015b, when you open Polyspace Code Prover for the first time, a Start Page pane
appears. From this pane, you can:

• Open recent results and demo examples.
• Start a new project.
• Get additional help using the Getting Started, What’s New and Learn More tabs.

If you select the Show on startup box on the lower left of this pane, the pane appears
each time you open Polyspace Code Prover. Otherwise, if you close the pane once, it does
not reopen. To open the pane, select Window > Show/Hide View > Start Page.

Saved Layouts: Save your preferred layouts of the Polyspace user
interface

In R2015b, if you reorganize the Polyspace user interface and place the various panes in
more convenient locations, you can save your new layout. If you change your layout, you
can quickly revert to a saved layout.

 Verification Setup

5-5

https://www.mathworks.com/help/releases/R2015b/codeprover/ug/your-compiler-is-unknown.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/your-compiler-is-unknown.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/polyspaceconfigure.html

With this modification, you can create customized layouts suitable for different
requirements and switch between saved layouts. For instance:

• You can have separate layouts for project configuration and results review.
• You can have a minimal layout with only frequently used panes.

For more information, see Organize Layout of Polyspace User Interface.

Renaming of labels in Polyspace user interface

In the Polyspace user interface, the following labels have been renamed:

• On the Configuration pane, the node Coding Rules is changed to Coding Rules &
Code Metrics. The Coding Rules & Code Metrics node contains the option
Calculate Code Metrics, which appeared previously on the Advanced Settings
node.

• On the Results Summary pane, the Category column title is changed to Group,
avoiding confusion with coding rule categories.

• On the Results Summary and Result Details pane, the field Classification is
changed to Severity. You assign a Severity such as High, Medium and Low to a
defect to indicate how critical you consider the issue.

• The labels associated with specifying constraints have changed as follows:

• On the Configuration pane, the field Variable/function range setup is
changed to Constraint setup.

• When you click Edit beside the Constraint setup field, a new window opens. The
window name is changed from Polyspace DRS Configuration to Constraint
Specification.

For more information, see Specify Constraints.

Including options multiple times

You can now specify analysis options multiple times. This feature is available only at the
command line or using the command-line names in the Advanced options dialog box in
the user interface. Customize pre-made configurations without having to find the
changed options in the options file.

R2015b

5-6

https://www.mathworks.com/help/releases/R2015b/codeprover/ug/organize-layout-of-polyspace-user-interface.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/specify-constraints.html

If you specify an option multiple times, only the last setting is used. For example, if your
configuration is:

-lang c
-prog test_bf_cp
-verif-version 1.0
-author username
-sources-list-file sources.txt
-OS-target no-predefined-OS
-target i386
-dialect none
-misra-cpp required-rules
-target powerpc

Polyspace uses the last target setting, powerpc, and ignores the other target specified,
i386.

The user interface also follows this rule. If you specify c18 for Target processor type
and -target i386 for Advanced options, this counts as multiple analysis option
specifications. Polyspace uses the target specified in the Advanced options box, i386.

Compatibility Considerations

If your current configuration specifies analysis options multiple times, change the
configuration by either:

• Removing the unnecessary analysis options.
• Moving the desired analysis options to the end of the configuration.

Updated Support for TargetLink

The Polyspace plug-in for TargetLink now supports versions 3.5 and 4.0 of the dSPACE®
Data Dictionary and TargetLink Code Generator.

dSPACE and TargetLink version 3.4 is no longer supported.

For more information, see TargetLink Considerations.

 Verification Setup

5-7

https://www.mathworks.com/help/releases/R2015b/codeprover/ug/targetlink-considerations.html

Improved handling of __declspec

For projects in Visual C, Polyspace Code Prover can now interpret the aligned size
specified by the keyword __declspec(align(…) …).

For example, this structure uses the __declspec keyword:

struct S1 { __declspec(align(8)) char c; };

In R2015b Polyspace correctly interprets the size of S1 as 8 bytes.

Compatibility Considerations

In previous versions, Polyspace ignored the __declspec keyword, so code with the
__declspec(align()) keyword was verifiable using Dialect > None. To avoid
compilation errors with the R2015b support of __declspec(align()), set Dialect to
one of the Visual C dialects. For the list of supported Visual dialects, see Dialect (C/C++).

Changes in analysis options

In R2015b, the following options have been added or removed.

R2015b

5-8

https://www.mathworks.com/help/releases/R2015b/codeprover/ref/dialect.html

New Options

Option Status More information
Respect C90 Standard

(-no-language-
extensions)

New The analysis does not allow C language
extensions that do not follow the
ISO/IEC 9899:1990 standard.

Dialect visual12.0 New Allows Microsoft Visual C++ 2013
(visual 12) language extensions.

Dialect gnu4.9 New Allows GCC 4.9 language extensions.
Dialect clang3.5 New Allows Clang 3.5 language extensions.
Configure multitasking
manually (C/C++)

New This option enables the previous
multitasking options (Entry points,
Critical section details, Temporally
exclusive tasks) in the user interface.

Enable automatic
concurrency detection (C/C+
+)

New Enables automatic concurrency
detection for POSIX® and VxWorks®
threading functions.

Disable checks for non-
initialization (C/C++)

New Disables checks for non-initialization in
your code.

 Verification Setup

5-9

https://www.mathworks.com/help/releases/R2015b/codeprover/ref/respect-c90-standard-c.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/dialect.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/dialect.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/dialect.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/multitasking-cc.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/multitasking-cc.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/enable-automatic-concurrency-detection.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/enable-automatic-concurrency-detection.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/enable-automatic-concurrency-detection.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/disable-checks-for-non-initialization.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/disable-checks-for-non-initialization.html

Updated Options

Option Status More information
Calculate Code Metrics (C/C
++)

Moved in user
interface

The option has been moved in the
Configuration panel from the Advanced
Settings pane to the Coding Rules
and Code Metrics pane.

-class-analyzer Updated syntax The syntax for -class-analyzer
param has been updated. Use -class-
analyzer custom=param

Signed right shift (C/C++)

(-logical-signed-
right-shift)

Now available in
C++ projects

Division round down (C/C+
+)

(-div-round-down)

Now available in
C++ projects

(-no-def-init-glob)

Now available in
C++ projects

Optimize large static
initializers (C/C++)

(-no-fold)

Now available in
C++ projects

-lightweight-thread-
model

No longer
available in the
user interface

R2015b

5-10

https://www.mathworks.com/help/releases/R2015b/codeprover/ref/calculate-code-metrics.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/calculate-code-metrics.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/class.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/signed-right-shift.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/division-round-down.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/division-round-down.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/ignore-default-initialization-of-global-variables-cc.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/optimize-large-static-initializers-no-fold.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/optimize-large-static-initializers-no-fold.html

Option Status More information
Targets:

• tms320c3x
• , sharc21x61
• necv850
• hc08
• hc12
• mpc5xx
• c18

Now available in
C++ projects

Enum type definition (C/C+
+)

(-enum-type-
definition)

Possible values
updated

The possible values for -enum-type-
definition are the same for C and C+
+. Available values:

• defined-by-standard (default)
• auto-signed-first
• auto-unsigned-first

-asm-begin -asm-end Now available in
C++ projects

-support-FX-option-
results

No longer
available in the
user interface

-pointer-is-24bits Available in C++
projects

Availably only if you use the Target
setting c18.

Output format (C/C++)

-report-output-format

Possible values
updated

The output format RTF is deprecated and
not available on the Configuration
pane.

 Verification Setup

5-11

https://www.mathworks.com/help/releases/R2015b/codeprover/ref/target-processor-type.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/enum-type-definition.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/enum-type-definition.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/asmbeginasmend.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/output-format-.html

Removed Options

Option Status More information
-dialect cfront2 Removed Use a different dialect instead.
-dialect cfront3 Removed Use a different dialect instead.
-known-NTC Removed Polyspace includes this behavior by default.

Remove this option from existing
configurations.

-desktop Removed Use -main-generator instead.
-permissive Removed Use -allow-negative-operand-in-

shift -ignore-constant-overflows
instead.

-automatic-stubbing Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

-float-overflows Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

-continue-with-
exisiting-host

Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

-allow-unsupported-
linux

Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

-passes-time Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

-ignore-missing-
headers

Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

-continue-with-red-
error

Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

R2015b

5-12

Option Status More information
-voa Removed Polyspace includes this behavior by default.

Remove this option from existing
configurations.

-machine-architecture Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

-allow-non-int-
bitfield

Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

-allow-undef-variables Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

-allow-unnamed-fields Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

-permissive stubber Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

-permissive-link Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

-allow-language-
extensions

Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

-include-headers-once Removed Polyspace includes this behavior by default.
Remove this option from existing
configurations.

-strict Removed This option is no longer supported. Remove
this option from existing configurations.

-discard-asm Removed This option is no longer supported. Remove
this option from existing configurations.

-quick Removed Use -to pass0 instead.

 Verification Setup

5-13

Option Status More information
-detect-unsigned-
overflows

Removed Use -scalar-overflows-checks-
signed-and-unsigned instead.

-misra2 AC-AGC-OBL-
subset

Removed Use -misra-ac-agc OBL-rules instead.

Compatibility Considerations
If you use scripts that contain a removed or updated option, change your scripts
accordingly.

Binaries removed
The following binaries have been removed.

Binary name Use instead
polyspace-automatic -orange-
tester.exe

From the Polyspace environment, select Tools >
Automatic Orange Tester

polyspace-c.exe polyspace-code-prover-nodesktop -lang c
polyspace-cpp.exe polyspace-code-prover-nodesktop -lang

cpp
polyspace-remote-c.exe polyspace-code-prover-nodesktop -lang c

-batch
polyspace-remote-cpp.exe polyspace-code-prover-nodesktop -lang

cpp -batch
polyspace-remote.exe polyspace-code-prover-nodesktop -batch
polyspace-rl-manager.exe polyspace-server-settings.exe
polyspace-spooler.exe polyspace-job-monitor.exe
polyspace-ver.exe polyspace-code-prover-nodesktop -ver

The binaries to use are located in matlabroot/polyspace/bin.

Support for Visual Studio 2008 to be removed
The Polyspace Add-In for Visual Studio 2008 is no longer supported and will be removed
in a future release.

R2015b

5-14

Compatibility Considerations

To analyze your Visual Studio projects, use either:

• The Polyspace Add-in for Visual Studio 2010. See Install Polyspace Add-In for Visual
Studio.

• The polyspace-configure tool to create a project using your build command. See
Create Project Using Visual Studio Information.

Import Visual Studio project removed

The Tools > Import Visual Studio project has been removed.

To import your project information from Visual Studio, use the Create from build
system option during new project creation. For more information, see Create Project
Using Visual Studio Information.

 Verification Setup

5-15

https://www.mathworks.com/help/releases/R2015b/codeprover/ug/install-polyspace-add-in-for-visual-studio.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/install-polyspace-add-in-for-visual-studio.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/configuring-polyspace-project-using-visual-studio-project-information.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/configuring-polyspace-project-using-visual-studio-project-information.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/configuring-polyspace-project-using-visual-studio-project-information.html

Verification Results

Improved Concurrency Detection: View more precise sharing and
protection results based on dynamic information such as data flow in
branching statements and protection on individual fields of a structure

In R2015b, Polyspace Code Prover uses dynamic information such as data flow in branch
statements to determine whether a variable is shared and protected. Previously, sharing
and protection were determined statically resulting in overapproximation of the actual
behavior. For more information on shared variables and multitasking options, see
Multitasking.

The following examples illustrate the change. For more examples, see Global Variables.

R2015b

5-16

https://www.mathworks.com/help/releases/R2015b/codeprover/multitasking.html
https://www.mathworks.com/help/releases/R2015b/codeprover/global-variable-reference.html

Data Flow in Branch Statements
Prior to R2015b R2015b
In the following code, if you specify task1
and task2 as entry points, the verification
determines that var_1 and var_2 are
shared, potentially unprotected variables.
However, because of the if statement,
task1 can operate only on var_1 and
task2 only on var_2. When determining
sharing, the verification does not consider
the branching in the if statement and
therefore determines that var_1 and
var_2 are shared.

unsigned int var_1;
unsigned int var_2;
volatile int randomVal;

void task1(void) {
 while(randomVal)
 operation(1);
}

void task2(void) {
 while(randomVal)
 operation(2);
}

void operation(int i) {
 if(i==1) {
 var_1++;
 }
 else {
 var_2++;
 }
}

int main(void) {
 return 0;
}

In the following code, if you specify task1
and task2 as entry points, the verification
determines that var_1 and var_2 are not
shared.

unsigned int var_1;
unsigned int var_2;
volatile int randomVal;

void task1(void) {
 while(randomVal)
 operation(1);
}

void task2(void) {
 while(randomVal)
 operation(2);
}

void operation(int i) {
 if(i==1) {
 var_1++;
 }
 else {
 var_2++;
 }
}

int main(void) {
 return 0;
}

 Verification Results

5-17

Shared Structures
Prior to R2015b R2015b
In the following code, if you specify task1
and task2 as entry points, the verification
determines that the structure variable
sharedStruct is a potentially unprotected
variable. However, task1 can operate only
on sharedStruct.var_1 and task2 only
on sharedStruct.var_2. The verification
considers sharedStruct as a whole and
ignores the sharing and protection on
individual fields of sharedStruct.

struct S {
 unsigned int var_1;
 unsigned int var_2;
};

volatile int randomVal;

struct S sharedStruct;

void task1(void) {
 while(randomVal)
 operation1();
}

void task2(void) {
 while(randomVal)
 operation2();
}

void operation1(void) {
 sharedStruct.var_1++;
}

void operation2(void) {
 sharedStruct.var_2++;
}

int main(void) {

In the following code, if you specify task1
and task2 as entry points, the verification
determines that the structure variable
sharedStruct is a shared, protected
variable. If you select the result, the
Result Details pane states that all
operations on the variable are protected by
access pattern. For the variable
sharedStruct, the Protection column on
the Variable Access pane contains
Access pattern.

struct S {
 unsigned int var_1;
 unsigned int var_2;
};

volatile int randomVal;

struct S sharedStruct;

void task1(void) {
 while(randomVal)
 operation1();
}

void task2(void) {
 while(randomVal)
 operation2();
}

void operation1(void) {
 sharedStruct.var_1++;
}

void operation2(void) {
 sharedStruct.var_2++;
}

int main(void) {

R2015b

5-18

Prior to R2015b R2015b
 return 0;
}

 return 0;
}

Additional MISRA C:2012 Support: Detect violations of all MISRA C:
2012 rules except rules 22.x

In R2015b, Polyspace Code Prover supports the following MISRA C: 2012 coding rules.

For complete MISRA C: 2012 support, including rules 22.1–22.4 and 22.6, use Polyspace
Bug Finder.
Rule Description
MISRA C:2012 Directive 2.1 All source files shall compile without any compilation

errors.
MISRA C:2012 Directive 4.5 Identifiers in the same name space with overlapping

visibility should be typographically unambiguous.
MISRA C:2012 Rule 2.6 A function should not contain unused label declarations.
MISRA C:2012 Rule 2.7 There should be no unused parameters in functions.
MISRA C:2012 Rule 17.5 The function argument corresponding to a parameter

declared to have an array type shall have an appropriate
number of elements.

MISRA C:2012 Rule 17.8 A function parameter should not be modified.
MISRA C:2012 Rule 21.12 The exception handling features of <fenv.h> should not

be used.
MISRA C:2012 Rule 22.5 A pointer to a FILE object shall not be dereferenced.

Improved precision for mathematical functions

Polyspace Code Prover has more precise implementations for mathematical functions
defined in math.h.

Improvements in checking of previously supported MISRA C rules

In R2015b, the following changes have been made in checking of previously supported
MISRA C rules.

 Verification Results

5-19

https://www.mathworks.com/help/releases/R2015b/codeprover/ref/misrac2012directive2.1.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/misrac2012directive4.5.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/misrac2012rule2.6.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/misrac2012rule2.7.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/misrac2012rule17.5.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/misrac2012rule17.8.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/misrac2012rule21.12.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/misrac2012rule22.5.html

MISRA C:2004 Rules
Rule Description Improvement
MISRA C:2004 Rule
2.1

Assembly language
shall be encapsulated
and isolated.

If an assembly language statement is
entirely encapsulated in macros,
Polyspace no longer considers that the
statement violates this rule.

MISRA C:2004 Rule
8.8

An external object or
function shall be
declared in one file
and only one file.

Polyspace considers that variables or
functions declared extern in a non-
header file violate this rule.

MISRA C:2004 Rule
10.1

The value of an
expression of integer
type shall not be
implicitly converted to
a different underlying
type if it is not a
conversion to a wider
integer type of the
same signedness.

Polyspace no longer raises violation of
this rule on operations involving
pointers.

MISRA C:2004 Rule
19.2

Nonstandard
characters should not
occur in header file
names in #include
directives.

Polyspace no longer raises violation of
this rule if the character \ or \\
occurs between the < and > in
#include <filename> (or between
" and " in #include "filename").

Therefore, you can use Windows
paths to files in place of filename
without triggering a rule violation.

MISRA C:2012 Rules
Rule Description Improvement
MISRA C:2012
Directive 4.3

Assembly language
shall be encapsulated
and isolated.

If an assembly language statement is
entirely encapsulated in macros,
Polyspace no longer considers that the
statement violates this rule.

R2015b

5-20

https://www.mathworks.com/help/releases/R2015b/codeprover/ref/misrac2012directive4.3.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/misrac2012directive4.3.html

Rule Description Improvement
MISRA C:2012 Rule
1.1

The program shall
contain no violations of
the standard C syntax
and constraints, and
shall not exceed the
implementation's
translation limits.

If a rule violation occurs because
your .c file contains too many
macros, instead of placing the rule
violation on the last macro usage,
Polyspace places the rule violation at
the beginning of the file.

Therefore, you can add a comment
before the first line of the .c file
justifying the violation. Previously,
you had to place the comment before
the last macro usage. If you added
another use of the macro later, the
comment did not apply. For
information on adding code comments
to justify results, see Add Review
Comments to Code.

MISRA C:2012 Rule
10.4

Both operands of an
operator in which the
usual arithmetic
conversions are
performed shall have
the same essential
type category.

• If one of the operands is the
constant zero, Polyspace does not
raise a violation of this rule.

• If one of the operands is a signed
constant and the other operand is
unsigned, the rule violation is not
raised if the signed constant has
the same representation as its
unsigned equivalent.

For instance, the statement u8b =
u8a + 3;, where u8a and u8b are
unsigned char variables, does
not violate the rule because the
constants 3 and 3U have the same
representation.

 Verification Results

5-21

https://www.mathworks.com/help/releases/R2015b/codeprover/ref/misrac2012rule1.1.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/misrac2012rule1.1.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/assign-review-comments-to-code.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/assign-review-comments-to-code.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/misrac2012rule10.4.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/misrac2012rule10.4.html

Checking Coding Rules Using Text Files

In R2015b, if your coding rules configuration text file has an incorrect syntax, the
analysis stops with an error message. The error message states the line numbers in the
configuration file that contain the incorrect syntax.

For more information on checking for coding rules using text files, see Select Specific
MISRA or JSF Coding Rules.

Change in Correctness Condition Check

In R2015b, the specification of the Correctness Condition check has changed in the
following way. For more information on the check, see Correctness condition.

When you use a function pointer to call a function and Polyspace cannot determine which
function the pointer points to, the Correctness Condition check is orange instead of
red. This situation can occur, for instance, if:

• The function pointer points to an absolute address. The check is orange because the
verification cannot determine from the code whether the absolute address contains a
well-typed function.

• The function pointer contains the return value of a stubbed function. For information
on stubbing, see Assumptions About Stubbed Functions.

Following the orange check, the verification assumes that the following variables can
have the full range of values allowed by their type:

• Variable storing the return value from the function call.
• Variables that can be modified through the function arguments.

Compatibility Considerations

If your code contains function pointers that point to an absolute address for instance, you
can see a change in the number of results from a previous version of the product. Because
red checks stop further verification of the code in the current block and orange checks do
not, this change of the Correctness Condition check from red to orange can expose
more of your code to verification. Therefore, the number of checks in your code can
change.

R2015b

5-22

https://www.mathworks.com/help/releases/R2015b/codeprover/ug/setting-up-coding-rules-checking.html#buor2_1-4
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/setting-up-coding-rules-checking.html#buor2_1-4
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/correctnesscondition.html
https://www.mathworks.com/help/releases/R2015b/codeprover/function-stubbing.html

Reviewing Results

Improved Review Capability: View result details and add review
comments in one window

In R2015b, the Check Details pane is renamed Result Details. On this pane, in
addition to viewing details about a result, you can now enter review information such as
Classification, Status, and comments. For more information, see Add Review
Comments to Results.

Enhanced Review Scope: Filter coding rule violations from display in
one click

In R2015b, you can suppress a certain number or percentage of coding rule violations
from the display using custom options in the Show menu on the Results Summary
pane. You can:

• Suppress violations of coding rules that are not relevant for you.
• Focus your results review by seeing only a certain number of coding rule violations in

your display.
• Predefine a percentage of coding rule violations that you intend to review. View only

that percentage in your analysis results.

 Reviewing Results

5-23

https://www.mathworks.com/help/releases/R2015b/codeprover/ug/review-and-comment-checks.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/review-and-comment-checks.html

You define an option on the Show menu only once. The option is available for one-click
use every time that you open your results. For more information, see Suppress Certain
Rules from Display in One Click.

Previously, using custom options on the Show menu, you suppressed orange checks and
code metrics (if they fell below a certain threshold). With this enhancement, you can use
the Show menu to display only those results that must be justified to reach a certain
Software Quality Objective (SQO) level. For instance, you can reach predefined SQO
levels 4, 5, and 6 using the options on the Show menu. For more information, see
Software Quality Objectives.

Additional Call Graph Showing Task Creation

For global variables, the call graph provides a visual representation of the function call
sequence leading to operations on the variable. In R2015b, the call graph for shared
global variables has been augmented with a supporting call graph that shows task
creation.

Previously, Polyspace modeled multitasking code by assuming that all tasks begin after
the main completes execution. This model has been relaxed for POSIX thread creation
functions allowing creation of tasks in the main and in functions called from the main.
Therefore, the call sequence leading to the creation of a task can be nontrivial. The task
creation call graph provides you a visual representation of this call sequence.

For more information, see Review Global Variable Usage.

Improvements in Polyspace Metrics workflow

In R2015b, the Polyspace Metrics workflow has improved in the following ways:

• You can justify code complexity metrics in the Polyspace user interface and upload
the justifications to Polyspace Metrics. If a code metric value violates quality

thresholds and appears red, after justification, it appears green with the icon.

For more information about justifying Polyspace results starting from the Polyspace
Metrics interface, see Compare Metrics Against Software Quality Objectives.

• You can define custom SQO levels specific to a project. In the file Custom-SQO-
Definitions.xml, if you specify a project name, in the Polyspace Metrics web
dashboard, the custom SQO level appears only for that project. You can choose this

R2015b

5-24

https://www.mathworks.com/help/releases/R2015b/codeprover/ug/apply-coding-rule-violation-filters.html#buxio8b
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/apply-coding-rule-violation-filters.html#buxio8b
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/software-quality-objectives-or-sqo.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/review-global-variables.html
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/compare-metrics-against-software-quality-objectives.html

SQO level to compare the project against quality thresholds that you defined. For
more information, see Customize Software Quality Objectives.

• In the Polyspace user interface, the same menu item Metrics > Upload to Metrics
allows you to upload your results initially and also upload comments and
justifications in the results later.

Previously, you used a different menu item Save comments to Metrics to save your
review comments and justifications in a result.

For more information on uploading comments and justifications from the Polyspace
user interface to the Polyspace Metrics web interface, see Review Metrics for
Particular Project or Run.

Improvements in Polyspace Plugin for Eclipse

In R2015b, the following improvements have been made to the Polyspace plugin for
Eclipse:

• When you select a result in the Results Summary view, the Result Details view
displays additional information about the result. In the Result Details view, if you

click the button next to the result name, you can see a brief description and
examples of the result.

• You can switch to a Polyspace perspective that shows only the information relevant to
a Polyspace Code Prover verification. To open the perspective, select Window >
Open Perspective > Other. In the Open Perspective dialog box, select Polyspace.

Improvements in Report Templates

In R2015b, the major improvements in report templates include the following:

• Instead of filenames, absolute paths to files appear in the reports.
• If you check for coding rules, the appendix about coding rules configuration states all

rules along with the information whether they were enabled or disabled. Previously,
the appendix only stated the enabled rules.

For more information on templates, see Report template (C/C++).

 Reviewing Results

5-25

https://www.mathworks.com/help/releases/R2015b/codeprover/ug/compare-metrics-against-software-quality-objectives.html#bsnx3ev
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/view-software-quality-metrics.html#bup57v7
https://www.mathworks.com/help/releases/R2015b/codeprover/ug/view-software-quality-metrics.html#bup57v7
https://www.mathworks.com/help/releases/R2015b/codeprover/ref/report-template.html

Configuration Associated with Result Not Opened by Default

In R2015b, when you open your result, the Configuration pane does not automatically
display a read-only form of the associated configuration.

To view the configuration associated with the result, select the link View configuration
for results on the Dashboard pane. If a corresponding project is open on the Project
Browser pane, you can also right-click the result under the Results node in the project
and select Open Configuration.

XML and RTF report formats removed

The formats XML and RTF for report generation are no longer available from R2016a
onwards. If you generated reports using one of these formats, use an alternative format
instead.

For more information, see Output format (C/C++).

R2015b

5-26

https://www.mathworks.com/help/releases/R2015b/codeprover/ref/output-format-.html

R2015a

Version: 9.3

New Features

Bug Fixes

Compatibility Considerations

6

Verification Setup

Simplified workflow for project setup and results review with a unified
user interface

In R2015a, the Project and Results Manager perspectives are now unified. You can run
verification and review results without switching between two perspectives.

The major changes are:

• You can start a new verification during your results review. Previously, you started a
new verification only from the Project Manager perspective.

• After a verification, the result opens automatically. If you are looking at a previous
result when a verification is over, you can load the new result or retain the previous
one on the Results Summary pane. If you retain the previous results, you can later
open the new results from the Project Browser. The new results are highlighted.

• You can have any of the panes open in the unified interface.

Previously, you could open the following panes only in one of the two perspectives.

R2015a

6-2

Project Manager Results Manager
• Project Browser: Set up project.
• Configuration: Specify analysis

options for your project.
• Output Summary: Monitor progress

of verification.
• Run Log: Find detailed information

about a verification.

• Results Summary: View Polyspace
results.

• Source: View read-only form of source
code color coded with Polyspace
results.

• Check Details: View details of a
particular result.

• Check Review: Comment on a
particular result.

• Variable Access: View global
variables and read/write operations on
them.

• Call Hierarchy: View callers and
callees of a function.

• Results Properties: Same as Run
Log, but associated with results
instead of a project. This pane has
been removed.

To open the log associated with a
result, with the results open, select
Window > Show/Hide View > Run
Log.

• Settings: Same information as
Configuration, but associated with
results instead of a project. This pane
has been removed.

To open the configuration associated
with a result, with the results open,
select Window > Show/Hide View >
Configuration.

• Orange Sources: View sources of
orange checks.

• Sensitivity Context: For a check
that has a different color for different

 Verification Setup

6-3

Project Manager Results Manager
function calls, view the check color for
each function call.

Improvements in search capability in the user interface

In R2015a, the Search pane allows you to search for a string in various panes of the user
interface.

To search for a string in the new user interface:

1 If the Search pane is not visible, open it. Select Window > Show/Hide View >
Search.

2 Enter your string in the search box.
3 From the drop-down list beside the box, select names of panes you want to search.

The Search pane consolidates the search options previously available.

Support for GCC 4.8

Polyspace now supports the GCC 4.8 dialect for C and C++ projects.

To allow GCC 4.8 extensions in your Polyspace Code Prover verification, set Target &
Compiler > Dialect option gnu4.8.

For more information, see Dialect (C) and Dialect (C++).

Polyspace plug-in for Simulink improvements

In R2015a, there are three improvements to the Polyspace Simulink plug-in.

Integration with Simulink projects

You can now save your Polyspace results to a Simulink project. Using this feature, you
can organize and control your Polyspace results alongside your model files and folders.

To save your results to a Simulink project:

1 Open your Simulink project.

R2015a

6-4

https://www.mathworks.com/help/releases/R2015a/codeprover/ref/dialect.html
https://www.mathworks.com/help/releases/R2015a/codeprover/ref/dialect-1.html

2 From your model, select Code > Polyspace > Options.
3 In the Polyspace parameter configuration tab, select the Save results to Simulink

project option.

For more information, see Save Results to a Simulink Project.

DRS file format changed to XML

By default, the DRS files generated in Simulink are saved in XML.

For more information, see XML File Format for Constraints

If you want to used a customized .txt DRS file, contact customer support.

Back-to-model available when Simulink is closed

In the Polyspace plug-in for Simulink, the back-to-model feature now works even when
your model is closed. When you click a link in your Polyspace results, MATLAB opens
your Simulink model and highlights the appropriate block.

Note This feature works only with Simulink R2013b and later.

For more information about the back-to-model feature, see Identify Errors in Simulink
Models.

Polyspace binaries being removed

The following Polyspace binaries will be removed in a future release. The binaries are
located in matlabroot/polyspace/bin. You get a warning if you run them.

Binary name Use instead
polyspace-automatic -orange-
tester.exe

From the Polyspace environment, select Tools >
Automatic Orange Tester

polyspace-c.exe polyspace-code-prover-nodesktop -lang c
polyspace-cpp.exe polyspace-code-prover-nodesktop -lang

cpp
polyspace-remote-c.exe polyspace-code-prover-nodesktop -lang c

-batch

 Verification Setup

6-5

https://www.mathworks.com/help/releases/R2015a/codeprover/ug/manage-results.html#buqx2wl-1
https://www.mathworks.com/help/releases/R2015a/codeprover/ug/xml-format-of-drs-file.html
https://www.mathworks.com/help/releases/R2015a/codeprover/ug/identify-errors-in-simulink-models.html
https://www.mathworks.com/help/releases/R2015a/codeprover/ug/identify-errors-in-simulink-models.html

Binary name Use instead
polyspace-remote-cpp.exe polyspace-code-prover-nodesktop -lang

cpp -batch
polyspace-remote.exe polyspace-code-prover-nodesktop -batch
polyspace-rl-manager.exe polyspace-server-settings.exe
polyspace-spooler.exe polyspace-job-monitor.exe
polyspace-ver.exe polyspace-code-prover-nodesktop -ver

Import Visual Studio project being removed

The File > Import Visual Studio project will be removed in a future release. Instead,
use the Create from build system option during New Project creation. For more
information, see Trace Visual Studio Build.

R2015a

6-6

https://www.mathworks.com/help/releases/R2015a/codeprover/ug/configuring-polyspace-project-using-visual-studio-project-information.html#bt_7t4e

Verification Results

Detection of stack pointer dereference outside scope

In R2015a, the Illegally dereferenced pointer check can detect stack pointer
dereference outside scope. Such dereference can happen, for example, when a pointer to a
variable that is local to a function is returned from the function. Because the scope of the
variable is limited to the function, dereferencing the pointer outside the function can
cause undefined behavior.

This enhancement is not available by default. Use the option -detect-pointer-
escape to detect such dereferences. To provide command-line options in the user
interface:

1 On the Configuration pane, select Advanced Settings.
2 Enter the option in the Other field.

Before R2015a R2015a
In the following code, ptr points to ret.
Because the scope of ret is limited to
func1, when ptr is accessed in func2, the
access is illegal. Polyspace Code Prover did
not detect such pointer escapes.

void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

In the following code, Polyspace Code
Prover produces a red Illegally
dereferenced pointer check on *ptr.

void func2(int *ptr) {
 *ptr = 0;
}

int* func1(void) {
 int ret = 0;
 return &ret ;
}
void main(void) {
 int* ptr = func1() ;
 func2(ptr) ;
}

The Check Details pane displays a message indicating that ret is accessed outside its
scope.

 Verification Results

6-7

Isolated ellipsis for variable number of function arguments supported

In R2015a, for C++ code, Polyspace Code Prover supports the ellipsis in the function
definition syntax void foo(...){} to mean variable number of arguments. Previously,
the use of ellipsis in isolation was not supported. You could use only the syntax where
the ellipsis was preceded with other parameters.
Before R2015a R2015a
In the following code, Polyspace considers
that foo has no arguments. Therefore, it
produces a red Correctness condition
error on the second function call. The
Check Details pane indicates that the
wrong number of arguments were used in
the function call.

void foo(...) {
 /* Function body */
}

void main() {
 foo();
 foo(1,2); //Red COR
}

In the following code, Polyspace considers
that foo takes a variable number of
arguments. It does not produce a red
Correctness condition error on the
second function call.

void foo(...) {
 /* Function body */
}

void main() {
 foo();
 foo(1,2); //No COR
}

Improvement in pointer comparisons

In R2015a, Polyspace is more precise on pointer comparisons. In certain cases, if the
software can determine that a pointer comparison is always true or false, it provides that
result. Previously, Polyspace did not check pointer comparisons.

R2015a

6-8

Before R2015a R2015a
In the following code, Polyspace does not
check the comparison ptr==&invalid.
Therefore, it considers that check can
return either 0 or 1. In the main function,
it verifies both branches of the if-else
statement.

#include <stdlib.h>
typedef unsigned char U8;
U8 invalid;
#define TEST_DISABLED &invalid

U8 check(U8 cnt, U8* ptr)
{
 U8 ret=0;
 if (ptr == &invalid)
 {
 ret=1;
 }
 return ret;
}

void main()
{ U8 isDisabled;
 isDisabled = check(1U,\
TEST_DISABLED);
 if(isDisabled == 1) {
 /* Do not perform test */
 }
 else {
 /* Perform test */
 }
}

In the following code, Polyspace checks the
comparison ptr===&invalid and
determines that it is always true.
Therefore, it considers that the if test is
redundant and the function check returns
1 only. In the main function, it verifies the
if branch and considers the else branch
as unreachable.

#include <stdlib.h>
typedef unsigned char U8;
U8 invalid;
#define TEST_DISABLED &invalid

U8 check(U8 cnt, U8* ptr)
{
 U8 ret=0;
 if(ptr == &invalid)
 {
 ret=1;
 }
 return ret;
}

void main()
{ U8 isDisabled;
 isDisabled = check(1U,\
TEST_DISABLED);
 if(isDisabled == 1) {
 /* Do not perform test */
 }
 else {
 /* Perform test */
 }
}

 Verification Results

6-9

Improvements in coding rules checking
MISRA C:2004 and MISRA AC AGC

Rule Number Effect More Information
Rule 12.6 More results on noncompliant

#if preprocessor directives
Fewer results for variables cast
to effective Boolean types.

MISRA C:2004 Rules — Chapter
12: Expressions

Rule 12.12 Fewer results when converting to
an array of float

MISRA C:2004 Rules — Chapter
12: Expressions

R2015a

6-10

https://www.mathworks.com/help/releases/R2015a/codeprover/ug/misra-c-coding-rules.html#brjxmkc-1
https://www.mathworks.com/help/releases/R2015a/codeprover/ug/misra-c-coding-rules.html#brjxmkc-1
https://www.mathworks.com/help/releases/R2015a/codeprover/ug/misra-c-coding-rules.html#brjxmkc-1
https://www.mathworks.com/help/releases/R2015a/codeprover/ug/misra-c-coding-rules.html#brjxmkc-1

MISRA C:2012

Rule Number Effect More Information
Rules 10.3 Fewer results on enumeration

constants when the type of the
constant is a named enumeration
type.
Fewer results on user-defined
effective Boolean types.

MISRA C:2012 Rule 10.3

Rule 10.4 Fewer results on enumeration
constants when the type of the
constant is a named enumeration
type.
Fewer results for casts to user-
defined effective Boolean types.

MISRA C:2012 Rule 10.4

Rule 10.5 Fewer results on enumeration
constants when the type of the
constant is a named enumeration
type.
Fewer results on user-defined
effective Boolean types.

MISRA C:2012 Rule 10.5

Rule 12.1 More results on expressions with
sizeof operator and on
expressions with ? operators.
Fewer results on operators of the
same precedence and in
preprocessing directives.

MISRA C:2012 Rule 12.1

Rule 14.3 No results for non-controlling
expressions.

MISRA C:2012 Rule 14.3

 Verification Results

6-11

https://www.mathworks.com/help/releases/R2015a/codeprover/ref/misrac2012rule10.3.html
https://www.mathworks.com/help/releases/R2015a/codeprover/ref/misrac2012rule10.4.html
https://www.mathworks.com/help/releases/R2015a/codeprover/ref/misrac2012rule10.5.html
https://www.mathworks.com/help/releases/R2015a/codeprover/ref/misrac2012rule12.1.html
https://www.mathworks.com/help/releases/R2015a/codeprover/ref/misrac2012rule14.3.html

MISRA C++:2008

Rule Number Effect More Information
Rule 5-0-3 Fewer results on enumeration

constants when the type of the
constant is the enumeration type.

MISRA C++ Rules — Chapter 5

Rule 6-5-1 Fewer results on compliant
vector variable iterators.

MISRA C++ Rules — Chapter 6

Rule 14-8-2 Fewer results for functions
contained in the Files and folders
to ignore (C++) option.

MISRA C++ Rules — Chapter 14

Rule 15-3-2 Fewer results for user-defined
return statements after a try
block.

MISRA C++ Rules — Chapter 15

R2015a

6-12

https://www.mathworks.com/help/releases/R2015a/codeprover/ug/misra-c-coding-rules-1.html#bse_zo6-7
https://www.mathworks.com/help/releases/R2015a/codeprover/ug/misra-c-coding-rules-1.html#bse_zo6-8
https://www.mathworks.com/help/releases/R2015a/codeprover/ref/files-and-folders-to-ignore_bt7e0xw.html
https://www.mathworks.com/help/releases/R2015a/codeprover/ref/files-and-folders-to-ignore_bt7e0xw.html
https://www.mathworks.com/help/releases/R2015a/codeprover/ug/misra-c-coding-rules-1.html#bse_zo6-15
https://www.mathworks.com/help/releases/R2015a/codeprover/ug/misra-c-coding-rules-1.html#bse_zo6-16

Reviewing Results

Context-sensitive help for code complexity metrics, MISRA-C:2012, and
custom coding rules

In R2015a, context-sensitive help is available in the user interface for code complexity
metrics, MISRA C:2012 rule violations, and custom coding rule violations.

To access the contextual help, see Getting Help.

For information about these results, see:

• Code Metrics
• MISRA C:2012 Directives and Rules
• Custom Coding Rules

Review of code complexity metrics and global variable usage in user
interface

• “Code Complexity Metrics” on page 6-13
• “Global Variables” on page 6-14

Code Complexity Metrics

In R2015a, you can view code complexity metrics in the Polyspace user interface. For
more information, see Code Metrics. Previously, this information was available only in
the Polyspace Metrics web interface.

In the user interface, you can:

• Specify a limit for the value of a metric. If the metric value for your source code
exceeds this limit, the metric appears red on the Results Summary pane.

• Justify the value of a metric. If a metric value exceeds specified limits and appears
red, you can add a comment with the rationale.

Combining these actions, you can enforce coding standards across your organization. For
more information, see Review Code Metrics.

 Reviewing Results

6-13

https://www.mathworks.com/help/releases/R2015a/codeprover/gs/getting-help.html
https://www.mathworks.com/help/releases/R2015a/codeprover/metrics-reference.html
https://www.mathworks.com/help/releases/R2015a/codeprover/misra-c2012-directives-and-rules.html
https://www.mathworks.com/help/releases/R2015a/codeprover/custom-coding-rules.html
https://www.mathworks.com/help/releases/R2015a/codeprover/metrics-reference.html
https://www.mathworks.com/help/releases/R2015a/codeprover/ug/review-code-metrics.html

Reducing the complexity of your code improves code readability, reduces the possibility of
coding errors, and allows more precise Polyspace verification.

Global Variables

In R2015a, you can comment and justify global variable usage on the Results Summary
pane. Previously, you viewed global variable usage on the Variable Access pane, but
could not comment on them.

On the Results Summary pane, global variables are classified into one of the following
categories.
Category Color Meaning
Shared Potentially

unprotected
Orange Global variables

shared between
multiple tasks but
possibly not
protected from
concurrent access by
the tasks

Protected Green Global variables
shared between
multiple tasks and
protected from
concurrent access by
the tasks

Not shared Used Black Global variables
used in a single task

Unused Gray Global variables
declared but not
used

For more information, see Global Variables.

For code that you do not intend for multitasking, all variables are nonshared and can be
either used or unused. For code that you intend for multitasking, you can specify tasks
and protections through the analysis options for multitasking. For more information, see
Multitasking.

You can still view the global variables on the Variable Access pane.

R2015a

6-14

https://www.mathworks.com/help/releases/R2015a/codeprover/global-variable-reference.html
https://www.mathworks.com/help/releases/R2015a/codeprover/multitasking.html

• To comment and justify potentially unprotected and unused global variables, use the
Results Summary pane.

• To find the read and write operations on a global variable, use the Check Details or
Variable Access pane. On the Variable Access pane, you can also see the variable
range and other information.

For more information, see Review Global Variable Usage.

Review of latest results compared to the last run

In R2015a, you can review only new results compared to the previous run.

If you rerun your verification, the new results are displayed with an asterisk (*) against
them on the Results Summary pane. To filter only these new checks, select the New
results box.

If you make changes in your source code, you can use this feature to see only the checks
introduced due to those changes. You can avoid reviewing checks in the source code that
you did not change.

Guidance for reviewing Polyspace Code Prover checks in C code

In R2015a, the context-sensitive help for checks provides guidance about how to review
the check. The help describes:

• Information available in the software for the check.
• In your source code, how to navigate to the root cause of the check.
• Common causes of the check.

To open the context-sensitive help for a check:

• On the Results Summary or Source pane, select the check.
•

Select the button.
• Select the link in the section Diagnosing This Check.

This additional guidance is not available for C++-specific checks.

 Reviewing Results

6-15

https://www.mathworks.com/help/releases/R2015a/codeprover/ug/review-global-variables.html

Simplified results infrastructure

Polyspace results folders are reorganized and simplified. Files have been removed,
combined, renamed, or moved. The changes do not affect the results that you see in the
Polyspace environment.

Some important changes and file locations:

• The main results file is now encrypted and renamed ps_results.pscp. You can
view results only in the Polyspace environment.

• The log file, Polyspace_R2015a_project_date-time.log has not changed.

For more information, see Results Folder Contents.

R2015a

6-16

https://www.mathworks.com/help/releases/R2015a/codeprover/ug/files-in-the-results-folder.html

R2014b

Version: 9.2

New Features

Bug Fixes

Compatibility Considerations

7

Verification Setup

Improved verification speed

In R2014b, the following two changes improve the verification speed:

• Polyspace Code Prover can run the compilation phase of your verification in parallel
on multiple processors. The software detects available processors and uses them to
compile different source files in parallel.

Previously, the software ran post-compilation phases in parallel but compiled the
source files sequentially. Starting in R2014b, the software can use multiple processors
for the entire verification process.

To explicitly specify the number of processors, use the command-line option -max-
processes. For more information, see -max-processes.

• Polyspace Code Prover has an improved engine for verification. This engine typically
improves verification speed by 25%. However, in some cases, verification can take the
same amount of time or longer.

Compatibility Considerations

In most cases, you do not see significant change in the number of checks resulting from
the improved engine. If you see a major increase in the number of orange checks, contact
technical support. For more information, see Obtain System Information for Technical
Support.

Support for Mac OS

You can install and run Polyspace on Mac OS X. Polyspace is supported for Mac OS
10.7.4+, 10.8, and 10.9.

You can use Polyspace Metrics on Safari and set up your Mac as a Metrics server.
However, if you restart your Mac machine that is setup as a Metrics server, you must
restart the Polyspace server daemon.

The Automatic Orange Tester is not supported for Mac.

R2014b

7-2

https://www.mathworks.com/help/releases/R2014b/codeprover/ref/maxprocesses.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ug/obtain-configuration-information.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ug/obtain-configuration-information.html

Support for C++11

Polyspace can now fully analyze C++ code that follows the ISO/IEC 14882:2011 standard,
also called C++11.

Use two new analysis options when analyzing C++11 code. On the Target & Compiler
pane, select:

• C++11 extensions to allow the standard C++11 libraries and functions during your
analysis.

• Block char 16/32_t types to not allow char16_t or char32_t types during the
analysis.

For more information, see C++11 Extensions (C++) and Block char16/32_t types (C++).

Code Editor for editing source files in Polyspace user interface

In R2014b, by default, you can edit your source files inside the Polyspace user interface.

• In the Project Manager perspective, on the Project Browser tree, double-click your
source file.

• In the Results Manager perspective, right-click the Source pane and select Open
Source File.

Your source files appear on a Code Editor tab. On this tab, you can edit your source
files and save them.

To use an external text editor, change your preferences.

1 Select Tools > Preferences.
2 Specify an external editor on the Editors tab.

For more information, see Specify External Text Editor.

Local file-by-file verification

In R2014b, you can verify your source code file by file on your local installation of
Polyspace Code Prover. Each file is verified independently of the other files in your
module. Previously, you performed file-by-file verification only on a remote server. The
verification required:

 Verification Setup

7-3

https://www.mathworks.com/help/releases/R2014b/codeprover/ref/c-11-extensions-c.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ref/block-char1632-t-types-c.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ug/specify-text-editor.html

• Parallel Computing Toolbox™ on the client side
• MATLAB Distributed Computing Server™ on the server side

For more information on file-by-file verification, see:

• Run File-by-File Verification
• Open Results of File-by-File Verification

For information on file-by-file verification in batch mode, see:

• Run File-by-File Batch Verification
• Open Results of File-by-File Batch Verification

Simulink plug-in support for custom project files

With the Polyspace plug-in for Simulink, you can now use a project file to specify the
verification options.

On the Polyspace pane of the Configuration Parameters window, with the Use custom
project file option you can enter a path or browse for a .psprj project file.

For more information, see Configure Polyspace Analysis Options.

TargetLink support updated

The Polyspace plug-in for Simulink now supports TargetLink 3.4 and 3.5. Older versions
of TargetLink are not supported.

For more information, see TargetLink Considerations.

AUTOSAR support added

In R2013b, the Polyspace plug-in for Simulink added support for AUTOSAR generated
code with Embedded Coder®. If you use autosar.tlc as your System target file for
code generation, when you run Polyspace, the verification can use the data range
information from AUTOSAR.

The Polyspace verification uses the same default options and parameters as it does for
Embedded Coder.

R2014b

7-4

https://www.mathworks.com/help/releases/R2014b/codeprover/ug/run-file-by-file-verification-on-user-interface.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ug/open-results-of-file-by-file-verification-in-user-interface.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ug/run-file-by-file-remote-verification.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ug/open-results-of-file-by-file-batch-verification.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ug/configuring-polyspace-project.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ug/targetlink-considerations.html

For more information, see Embedded Coder Considerations.

Default verification level changed

In R2014b, unless you specify a verification level explicitly, Polyspace Code Prover
verification performs two passes on your source code instead of four. For instance:

• In the user interface, on the Output Summary tab, you can see that the verification
continues to Level2. For more passes, on the Configuration pane, under the
Precision node, select a higher Verification level.

• At the command line, the verification implicitly uses -to pass2. For more passes,
use the -to option explicitly with a higher pass value.

The default verification is completed in much less time.

For more information, see:

• Verification level (C)
• Verification level (C++)

Compatibility Considerations

If you do not specify a verification level explicitly in your polypsace-code-prover-
nodesktop command, your verification runs to Software Safety Analysis Level
2. In most cases, this verification level produces only slightly more orange checks than
Software Safety Analysis Level 4. However, if you see a significant change in
your results, to reproduce your earlier results:

• In the user interface, select Software Safety Analysis Level 4 for
Verification level.

• At the command line, use the option -to pass4 with the polypsace-code-
prover-nodesktop command.

Default mode changed for C++ code verification in user interface

When you create a new Polyspace Code Prover project with C++ as the project language,
the following options are selected in the user interface by default. The options appear on
the Configuration pane under the Code Prover Verification node.

 Verification Setup

7-5

https://www.mathworks.com/help/releases/R2014b/codeprover/ug/embedded-coder-considerations.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ref/verification-level-to.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ref/verification-level.html

Option Value
Verify Module On
Class all
Functions to call within the specified
classes

unused

Functions to call unused
Variables to initialize uninit

These options replace the default selection of Verify whole application on the
Polyspace user interface.

If your C++ code does not contain a main function, Polyspace generates a main by default
during verification from the user interface.

For more information on the main generation options, see Provide Context for C++ Code
Verification.

Improved global menu in user interface

The global menu in the Polyspace user interface has been updated. The following table
lists the current location for the existing global menu options.
Goal Prior to R2014b R2014b
Open the Polyspace Metrics
interface in your web
browser.

File > Open Metrics Web
Interface

Metrics > Open Metrics

Upload results from the
Polyspace user interface to
Polyspace Metrics.

File > Upload in
Polyspace Metrics
repository

Metrics > Upload to
Metrics

Update results stored in
Polyspace Metrics with your
review comments and
justifications.

File > Save in Polyspace
Metrics repository

Metrics > Save comments
to Metrics

Generate a report from
results after verification.

Run > Run Report > Run
Report

Reporting > Run Report

R2014b

7-6

https://www.mathworks.com/help/releases/R2014b/codeprover/ug/provide-context-to-c-code-verification.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ug/provide-context-to-c-code-verification.html

Goal Prior to R2014b R2014b
Open generated report. Run > Run Report >

Open Report
Reporting > Open Report

Partition source code into
modules.

Run > Run Modularize Tools > Run Modularize

Import review comments
from previous verification.

Review > Import Tools > Import
Comments

Specify code generator for
generated code.

Review > Code
Generator Support

Tools > Code Generator
Support

Specify settings that apply
to all Polyspace Code Prover
projects.

Options > Preferences Tools > Preferences

Specify settings for remote
verification.

Options > Metrics and
Remote Server Settings

Metrics > Metrics and
Remote Server Settings

Improved Project Manager perspective

The following changes have been made in the Project Manager perspective:

• The Progress Monitor tab does not exist anymore. Instead, after you start a
verification, you can view its progress on the Output Summary tab.

• Instead of a single progress bar showing all the stages of verification, you can see two
progress bars. The top bar shows progress in the current stage of verification and the
lower bar shows overall progress.

After verification, you can see the overall time taken. To see the time taken in each
stage of verification, click the icon.

• In the Project Browser, projects appear sorted in alphabetical order instead of order
of creation.

 Verification Setup

7-7

Changed analysis options
Changes have been made to the following analysis options:

• On the Configuration pane, the analysis option Files and folders to ignore has
been moved from Coding Rules Checking to Inputs & Stubbing. The functionality
in Polyspace Code Prover has not changed.

• On the Configuration pane, the Interactive option has been removed from the
graphical interface. To use interactive mode, use the -interactive flag at the
command line or in the Advanced Settings > Other text field.

• You cannot use batch mode or interactive mode with Verification Level > C/C++
source compliance checking.

To run only to code compliance, run Polyspace Code Prover locally.

To perform batch or interactive verifications, use Software Safety Analysis level 0
or higher.

Remote launcher and queue manager renamed
Polyspace has renamed the remote launcher and the queue manager.

Previous name New Name More information
polyspace-rl-manager.exe polyspace-server-

settings.exe
Only the binary name has
changed. The interface
title, Metrics and Remote
Server Settings, is
unchanged.

polyspace-spooler.exe polyspace-job-monitor.exe The binary and the
interface titles have
changed. Interface labels
have changed in the
Polyspace interface and its
plug-ins.

Queue Manager or Spooler Job Monitor

pslinkfun('queuemanager') pslinkfun('jobmonitor') See pslinkfun.

Compatibility Considerations
If you use the old binaries or functions, you receive a warning.

R2014b

7-8

https://www.mathworks.com/help/releases/R2014b/codeprover/ref/pslinkfun.html

Polyspace binaries being removed

The following Polyspace binaries will be removed in a future release. Unless otherwise
noted, the binaries to use are located in matlabroot/polyspace/bin.

Binary name What
happens

Use instead

polyspace-automatic -orange-
tester.exe

Warning From the Polyspace environment, select
Tools > Automatic Orange Tester

polyspace-c.exe Warning polyspace-code-prover-nodesktop -
lang c

polyspace-cpp.exe Warning polyspace-code-prover-nodesktop -
lang cpp

polyspace-remote-c.exe Warning polyspace-code-prover-nodesktop -
lang c -batch

polyspace-remote-cpp.exe Warning polyspace-code-prover-nodesktop -
lang cpp -batch

polyspace-remote.exe Warning polyspace-code-prover-nodesktop -
batch

polyspace-rl-manager.exe Warning polyspace-server-settings.exe
polyspace-spooler.exe Warning polyspace-job-monitor.exe
polyspace-ver.exe Warning polyspace-code-prover-nodesktop -

ver
setup-remote-launcher.exe Warning matlabroot/toolbox/polyspace /

psdistcomp/bin/setup-polyspace-
cluster

Import Visual Studio project being removed

The File > Import Visual Studio project will be removed in a future release. Instead,
use the Create from build system option during New Project creation. For more
information, see Trace Visual Studio Build.

 Verification Setup

7-9

https://www.mathworks.com/help/releases/R2014b/codeprover/ug/configuring-polyspace-project-using-visual-studio-project-information.html#bt_7t4e

Verification Results

Support for MISRA C:2012

Polyspace can now check your code against MISRA C:2012 directives and coding rules.
To check for MISRA C:2012 coding rule violations:

1 On the Configuration pane, select Coding Rules.
2 Select Check MISRA C:2012.
3 The MISRA C:2012 guidelines have different categories for handwritten and

automatically generated code.

If you want to use the settings for automatically generated code, also select Use
generated code requirements.

For more information about supported rules, see MISRA C:2012 Coding Directives and
Rules.

Improved verification precision for non-initialized variables

Polyspace Code Prover performs the following checks for initialization:

• Non-initialized local variable or NIVL
• Non-initialized variable or NIV

In R2014b, the following changes appear in these checks.

Read Operations on Structures

When you read structured variables, Polyspace Code Prover performs a check for
initialization. This check helps detect partially initialized and non-initialized structures
earlier in the code.

R2014b

7-10

https://www.mathworks.com/help/releases/R2014b/codeprover/ug/misra-c2012-coding-rules.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ug/misra-c2012-coding-rules.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ref/noninitializedlocalvariable.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ref/noninitializedvariable.html

Prior to R2014b R2014b
• When you read structured variable, a

check for initialization was not
performed.

• The checks occurred only when you read
individual fields of a structured
variable, provided the fields themselves
were not structured variables.

When you read structured variables, a
check for initialization occurs. The check
turns:

• Green, if all fields of the structure that
are used are initialized. If no field is
used, the check is green by default.

• Red, if all fields that are used are not
initialized.

• Orange, if only some fields that are used
are initialized. Following the check,
Polyspace considers that the
uninitialized fields have the full range
of values allowed by their type.

Polyspace considers a field as used if there
is a read or write operation on the field
anywhere in the code. Polyspace does not
check for initialization of fields that are not
used.

To determine which fields Polyspace
checked for initialization:

1 Select the NIV or NIVL check on the
Results Summary pane or Source
pane.

2 View the message on the Check
Details pane.

 Verification Results

7-11

Prior to R2014b R2014b
Example:

typedef struct S {
 int a;
 int b;
}S;

void func1(S);
void func2(int);

void main() {
 S varS;
 func1(varS);
 func2(varS.a);
}

A check was not performed when the non-
initialized structure varS was read. When
the field a of varS was read, a red NIVL
check appeared.

Example:

typedef struct S {
 int a;
 int b;
}S;

void func1(S);
void func2(int);

void main() {
 S varS;
 func1(varS);
 func2(varS.a);
}

When the non-initialized structure varS is
read, a red NIVL check appears.

For more examples, see:

• Partially initialized structure — All
used fields initialized

• Partially initialized structure — Some
used fields initialized

Other Operations

The specification of Non-initialized variable checks has changed for the following
operations. These operations are not commonly used. Therefore, it is likely that these
changes do not affect your Polyspace verification.
Prior to R2014b R2014b
If you initialized only the high bits of a
variable through a pointer, an orange check
for initialization appeared when the
variable was read.

If you initialize only the high bits of a
variable through a pointer, a green check
for initialization appears when the variable
is read.

R2014b

7-12

https://www.mathworks.com/help/releases/R2014b/codeprover/ref/noninitializedlocalvariable.html#buixo7l-1
https://www.mathworks.com/help/releases/R2014b/codeprover/ref/noninitializedlocalvariable.html#buixo7l-1
https://www.mathworks.com/help/releases/R2014b/codeprover/ref/noninitializedlocalvariable.html#buiyntf-1
https://www.mathworks.com/help/releases/R2014b/codeprover/ref/noninitializedlocalvariable.html#buiyntf-1

Prior to R2014b R2014b
If you performed an operation on a C++
object after it was destroyed, a red check
for initialization appeared on the operation.
The check indicated that the object was
destroyed.

If you perform an operation on a C++ object
after it is destroyed, the check for
initialization has the same color as before
the destruction. Polyspace does not
introduce a red check on this type of access.

Compatibility Considerations

If you use an earlier version of Polyspace Code Prover, it is possible that you see the
following changes in your results.

• Read operation on structures: You see an increase in the total number of checks.

However, some red or orange NIV or NIVL checks on the fields of structures turn
green. Instead, you see some new red or orange checks on the structures themselves.

• Other operations:

• If you have operations that initialize only the high bits of a variable through a
pointer, you can see a reduction in orange NIV or NIVL checks.

• If you have operations that access an object after it is destroyed, you can see a
reduction in red NIV or NIVL checks.

New checks for functions not called

Two new checks in Polyspace Code Prover detect C/C++ functions that are defined but
not called during execution of the code.
Check Purpose
Function not called Detects functions that are defined but not

called in the source files.
Function not reachable Detects functions that are defined but

called only from an unreachable part of the
source.

You can choose to activate these checks using the following options:

• In the user interface, on the Configuration pane, under Check Behavior, select a
value for the option Detect uncalled functions.

 Verification Results

7-13

https://www.mathworks.com/help/releases/R2014b/codeprover/ref/functionnotcalled.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ref/functionnotreachable.html

• At the command line, use the option -uncalled-function-checks with an
appropriate argument.

Goal Option Value
Do not detect uncalled functions. none
Detect functions that are defined but not
called.

never-called

Detect functions that are defined and called
only from an unreachable part of the code.

called-from-unreachable

Detect all uncalled functions. all

Improved precision level

In R2014b, certain internal limits have been removed from verification that uses a
Precision level of 3. Because of this improvement, you can use this Precision level to
significantly reduce orange checks, especially for multitasking code that uses shared
variables. However, if you use this level, the verification can take significantly longer.

To set Precision level to 3, do one of the following:

• In the user interface, on the Configuration pane, select Precision. From the
Precision level drop-down list, select 3.

• At the DOS or UNIX command prompt, use the flag -O3 with the polyspace-code-
prover-nodesktop command.

• At the MATLAB command prompt, use the argument '-O3' with the
polyspaceCodeProver function.

For more information, see Precision level (C/C++).

R2014b

7-14

https://www.mathworks.com/help/releases/R2014b/codeprover/ref/precision-level-o.html

Reviewing Results

Context-sensitive help for verification options and checks

In R2014b, contextual help is available for verification options in the Polyspace interface
and its plug-ins. To view the contextual help:

1 Hover your cursor over a verification option in the Configuration pane.
2 Inside the tooltip, select the “More Help” link.

The documentation for that option appears in a dockable window.

Contextual help is available in the Polyspace interface for run-time errors. To view the
contextual help for checks:

1 In the Results Manager perspective, select a run-time error from the results.
2

Inside the Check Details pane, select .

The documentation for that check appears in a docked window.

For more information, see Getting Help.

Updated Software Quality Objectives

In R2014b, the Software Quality Objectives or SQOs have been updated to include
MISRA C++: 2008 coding rule violations.

Using the predefined SQO levels, you can specify quality thresholds for your project or
individual files in your project. With the updated SQOs, you can now specify that your
project must not violate certain MISRA C++ rules.

For more information, see Predefined SQO Levels.

Improved Results Manager perspective

The following changes have been made in the Results Manager perspective:

• On the Source pane, the following code appears in gray:

 Reviewing Results

7-15

https://www.mathworks.com/help/releases/R2014b/codeprover/gs/getting-help.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ug/predefined-sqo-levels.html

• Code deactivated due to conditional compilation. Polyspace assigns a lighter shade
of gray to this code.

• Code in an unreachable branch. Polyspace assigns a darker shade of gray to this
code.

For the difference between the two cases, see the code below. To reproduce the colors,
before verification, on the Configuration pane, enter Polyspace= for
Preprocessor definitions.

• To prioritize your orange check review, use the Show menu on the Results
Summary pane. This menu replaces the previously available methodologies for the
same purpose.

• To display red, gray, and orange checks likely to be run-time errors, from the
Show menu, select Critical checks. This option replaces the First checks to
review methodology.

R2014b

7-16

• To display all checks, from the Show menu, select All checks. This option
replaces the All checks methodology.

• The methodologies Methodology for C/C++ > Light and Methodology for C/C+
+ > Moderate have been removed.

• To create your own subset of orange checks to review, select Tools > Preferences.
On the Review Scope tab, specify the number or percentage of orange checks of
each type to review. The options on this tab replace the options on the Review
Configuration tab.

• To group your checks, use the Group by menu on the Results Summary pane.

• To leave your checks ungrouped, instead of List of Checks, select Group by >
None.

• To group checks by check color and type, instead of Checks by Family, select
Group by > Family.

• To group checks by file and function, instead of Checks by File/Function, select
Group by > File.

• To view the percentage of checks that you have justified, instead of the Review
Statistics pane, use the Justified column on the Results Summary pane. On this
pane:

• To view the percentage of checks that you justified broken down by color/type,
select Group by > Family.

• To view the percentage of checks that you justified broken down by file/function,
select Group by > File.

Error mode removed from coding rules checking

In R2014b, the Error mode has been removed from coding rules checking. Therefore,
coding rule violations cannot stop a verification.

Compatibility Considerations

For existing coding rules files, rules having the keyword error are treated in the same
way as the keyword warning. For more information on warning, see Format of Custom
Coding Rules File.

 Reviewing Results

7-17

https://www.mathworks.com/help/releases/R2014b/codeprover/ug/contents-of-custom-coding-rules-file.html
https://www.mathworks.com/help/releases/R2014b/codeprover/ug/contents-of-custom-coding-rules-file.html

R2014a

Version: 9.1

New Features

Bug Fixes

Compatibility Considerations

8

Verification Setup

Automatic project setup from build systems

In R2014a, you can set up a Polyspace project from build automation scripts that you use
to build your software application. The automatic project setup runs your automation
scripts to determine:

• Source files.
• Includes.
• Target & Compiler options.

To set up a project from your build automation scripts:

• On the DOS or UNIX command line: Use the polyspace-configure command. For
more information, see Create Project from DOS and UNIX Command Line.

• In the user interface: When creating a new project, in the Project – Properties
window, select Create from build command. In the following window, enter:

• The build command that you use.
• The directory from which you run your build command.
• Additional options. For more information, see Create Project in User Interface.

Click . In the Project Browser, you see your new Polyspace project with
the required source files, include folders, and Target & Compiler options.

• On the MATLAB command line: Use the polyspaceConfigure function. For more
information, see Create Project from MATLAB Command Line.

Support for GNU 4.7 and Microsoft Visual Studio C++ 2012 dialects

Polyspace supports two additional dialects: Microsoft Visual Studio C++ 2012 and GNU®
4.7. If your code uses language extensions from these dialects, specify the corresponding
analysis option in your configuration. From the Target & Compiler > Dialect menu,
select:

• gnu4.7 for GNU 4.7

R2014a

8-2

https://www.mathworks.com/help/releases/R2014a/codeprover/ug/create-a-configuration-from-your-build-environment.html#bt9_wgg
https://www.mathworks.com/help/releases/R2014a/codeprover/ug/create-a-configuration-from-your-build-environment.html#bt2wd35
https://www.mathworks.com/help/releases/R2014a/codeprover/ug/create-a-configuration-from-your-build-environment.html#bt9_wh0

• visual11.0 for Microsoft Visual Studio C++ 2012

For more information about these and other supported dialects, see Dialects for C or
Dialects for C++.

Documentation in Japanese

The Polyspace product, including the documentation, is available in Japanese.

To view the Japanese version of Polyspace Code Prover documentation, go to http://
www.mathworks.co.jp/jp/help/codeprover/. If the documentation appears in English, from
the country list beside the globe icon at the top of the page, select Japan.

Preferences file moved

In R2014a, the location of the Polyspace preferences file has been changed.
Operating
System

Location before R2014a Location in R2014a

Windows %APPDATA%\Polyspace %APPDATA%\MathWorks\MATLAB\R2014a
\Polyspace

Linux /home/$USER/.polyspace /home/$USER/.matlab/$RELEASE/Polyspace
For more information, see Storage of Polyspace Preferences.

Support for batch analysis security levels

When creating an MDCS server for Polyspace batch analyses, you can now add
additional security levels through the MATLAB Admin Center. Using the Metrics
and Remote Server Settings, the MDCS server is automatically set to security level
zero. If you want additional security for your server, use the Admin Center button. The
additional security levels require authentication by user name, cluster user name and
password, or network user name and password.

For more information, see MDCS documentation.

Interactive mode for remote verification

In R2014a, you can select an additional Interactive mode for remote verification. In this
mode, when you run Polyspace Code Prover on a cluster, your local computer is tethered

 Verification Setup

8-3

https://www.mathworks.com/help/releases/R2014a/codeprover/ref/dialect.html
https://www.mathworks.com/help/releases/R2014a/codeprover/ref/dialect-1.html
http://www.mathworks.co.jp/jp/help/codeprover/
http://www.mathworks.co.jp/jp/help/codeprover/
https://www.mathworks.com/help/releases/R2014a/codeprover/ug/storage-of-polyspace-preferences.html
https://www.mathworks.com/help/releases/R2014a/mdce/set-mjs-cluster-security.html

to the cluster through Parallel Computing Toolbox and MATLAB Distributed Computing
Server.

To run verification in this mode

• In the user interface: On the Configuration pane, under Distributed Computing,
select Interactive.

• On the DOS or UNIX command line, append -interactive to the polyspace-
code-prover-nodesktop command.

• On the MATLAB command line, add the argument '-interactive' to the
polyspaceCodeProver function.

For more information, see Interactive.

Default text editor

In R2014a, Polyspace uses a default text editor for opening source files. The editor is:

• WordPad in Windows
• vi in Linux

You can change the text editor on the Editors tab under Options > Preferences. For
more information, see Specify Text Editor.

Support for Windows 8 and Windows Server 2012

Polyspace supports installation and analysis on Windows Server® 2012 and Windows 8.

For installation instructions, see Installation, Licensing, and Activation.

Check model configuration automatically before analysis

For the Polyspace Simulink plug-in, the Check configuration feature has been
enhanced to automatically check your model configuration before analysis. In the
Polyspace pane of the Model Configuration options, select:

• On, proceed with warnings to automatically check the configuration before
analysis and continue with analysis when only warnings are found.

R2014a

8-4

https://www.mathworks.com/help/releases/R2014a/codeprover/ref/polyspacecodeprover.html
https://www.mathworks.com/help/releases/R2014a/codeprover/ref/interactive.html
https://www.mathworks.com/help/releases/R2014a/codeprover/ug/specify-text-editor.html
https://www.mathworks.com/help/releases/R2014a/install/index.html

• On, stop for warnings to automatically check the configuration before analysis
and stop if warnings are found.

• Off to never check the configuration automatically before an analysis.

If the configuration check finds errors, Polyspace always stops the analysis.

For more information about Check configuration, see Check Simulink Model Settings.

Function replacement in Simulink plug-in

The following functions have been replaced in the Simulink plug-in by the function
pslinkfun. These functions be removed in a future release.

Function What
Happens?

Use This Function Instead

PolyspaceAnnotation Warning pslinkfun('annotations',...)
PolySpaceGetTemplateCFGFile Warning pslinkfun('gettemplate')
PolySpaceHelp Warning pslinkfun('help')
PolySpaceEnableCOMServer Warning pslinkfun('enablebacktomodel')
PolySpaceSpooler Warning pslinkfun('queuemanager')
PolySpaceViewer Warning pslinkfun('openresults',...)
PolySpaceSetTemplateCFGFile Warning pslinkfun('settemplate',...)
PolySpaceConfigure Warning pslinkfun('advancedoptions')
PolySpaceKillAnalysis Warning pslinkfun('stop')
PolySpaceMetrics Warning pslinkfun('metrics')

Polyspace binaries being removed

The following Polyspace binaries will be removed in a future release:

• polyspace-automatic-orange-tester.exe
• polyspace-c.exe
• polyspace-cpp.exe
• polyspace-modularize.exe
• polyspace-remote-c.exe

 Verification Setup

8-5

https://www.mathworks.com/help/releases/R2014a/codeprover/ug/checking-simulink-model-settings.html
https://www.mathworks.com/help/releases/R2014a/codeprover/ref/pslinkfun.html

• polyspace-remote-cpp.exe
• polyspace-remote.exe
• polyspace-report-generator.exe
• polyspace-results-repository.exe
• polyspace-rl-manager.exe
• polyspace-spooler.exe
• polyspace-ver.exe
• setup-remote-launcher.exe

R2014a

8-6

Verification Results

Support for additional Coding Rules (MISRA C:2004 Rule 18.2, MISRA
C++ Rule 5-0-11)

The Polyspace coding rules checker now supports two additional coding rules: MISRA C
18.2 and MISRA C++ 5-0-11.

• MISRA C 18.2 is a required rule that checks for assignments to overlapping objects.
• MISRA C++ 5-0-11 is a required rule that checks for the use of the plain char type as

anything other than storage or character values.
• MISRA C++ 5-0-12 is a required rule that checks for the use of the signed and

unsigned char types as anything other than numerical values.

For more information, see MISRA C:2004 Coding Rules or MISRA C++ Coding Rules.

Improvement of floating point precision

In R2013b, Polyspace improved the precision of floating point representation. Previously,
Polyspace represented the floating point values with intervals, as seen in the tooltips.
Now, Polyspace uses a rounding method.

For example, the verification represents float arr = 0.1; as,

• Pre-R2013b, arr = [9.9999E^-2,1.0001E-1].
• Now, arr = 0.1.

 Verification Results

8-7

https://www.mathworks.com/help/releases/R2014a/codeprover/ug/misra-c-coding-rules.html
https://www.mathworks.com/help/releases/R2014a/codeprover/ug/misra-c-coding-rules-1.html

Reviewing Results

Results folder appearance in Project Browser

In R2014a, the results folder appears in a simplified form in the Project Browser.
Instead of a folder containing several files, the result appears as a single file.

• Format before R2014a:

• Format in R2014a:

The following table lists the changes in the actions that you can perform on the results
folder.

R2014a

8-8

Action 2013b 2014a
Open results. In the result folder, double-click

result file with
extension .pscp.

Double-click result file.

Open analysis options used for
result.

In the result folder, select
options.

Right-click result file and select
Open Configuration.

Open metrics page for batch
analyses if you had used the
analysis option Distributed
Computing > Add to results
repository.

In the result folder, select
Metrics Web Page.

Double-click result file.

If you had used the option
Distributed Computing >
Add to results repository,
double-clicking the results file
for the first time opens the
metrics web page instead of the
Result Manager perspective.

Open results folder in your file
browser.

Navigate to results folder.

To find results folder location,
select Options > Preferences.
View result folder location on
the Project and Results
Folder tab.

Right-click result file and select
Open Folder with File
Manager.

Results Manager improvements
• In R2014a, you can view the extent of a code block on the Source pane by clicking

either its opening or closing brace.

 Reviewing Results

8-9

Note This action does not highlight the code block if the brace itself is already
highlighted. The opening brace can be highlighted, for instance, if there is an
Unreachable code error on the code block.

• In R2014a, the Verification Statistics pane in the Project Manager and the Results
Statistics pane in the Results Manager have been renamed Dashboard.

On the Dashboard, you can obtain an overview of the results in a graphical format.
For more information, see Dashboard.

• In R2014a, on the Results Summary pane, you can distinguish between violations of
predefined coding rules such as MISRA C or C++ and custom coding rules.

• The predefined rules are indicated by .
• The custom rules are indicated by .

In addition, when you click on the Check column header on the Results Summary
pane, the rules are sorted by rule number instead of alphabetically.

• In R2014a, you can double-click a variable name on the Source pane to highlight all
instances of the variable.

R2014a

8-10

https://www.mathworks.com/help/releases/R2014a/codeprover/ug/source.html#bt1btjh-1

Simplification of coding rules checking

In R2014a, the Error mode has been removed from coding rules checking. This mode
applied only to:

• The option Custom for:

• Check MISRA C rules
• Check MISRA AC AGC rules
• Check MISRA C++ rules
• Check JSF C++ rules

• Check custom rules

The following table lists the changes that appear in coding rules checking.
Coding Rules
Feature

2013b 2014a

New file wizard
for custom
coding rules.

For each coding rule, you can select three
results:

• Error: Analysis stops if the rule is
violated.

The rule violation is displayed on the
Output Summary tab in the Project
Manager perspective.

• Warning: Analysis continues even if
the rule is violated.

The rule violation is displayed on the
Results Summary pane in the Result
Manager perspective.

• Off: Polyspace does not check for
violation of the rule.

For each coding rule, you can select
two results:

• On: Analysis continues even if
the rule is violated.

The rule violation is displayed on
the Results Summary pane in
the Result Manager perspective.

• Off: Polyspace does not check for
violation of the rule.

 Reviewing Results

8-11

Coding Rules
Feature

2013b 2014a

Format of the
custom coding
rules file.

Each line in the file must have the syntax:

rule off|error|warning #comments

For example:

MISRA configuration - Proj1
10.5 off #don't check 10.5
17.2 error
17.3 warning

Each line in the file must have the
syntax:

rule off|warning #comments

For example:

MISRA configuration - Proj1
10.5 off #don't check 10.5
17.2 warning
17.3 warning

Compatibility Considerations

For existing coding rules files that use the keyword error:

• If you run analysis from the user interface, it will be treated in the same way as the
keyword warning. The verification will not stop even if the rule is violated. The rule
violation will however be reported on the Results Summary pane.

• If you run analysis from the command line, the verification will stop if the rule is
violated.

Additional back-to-model support for Simulink plug-in

As you click the different links, the corresponding block is highlighted in the model.
Because of internal improvements, the back-to-model feature is more stable.
Additionally, support has been added for Stateflow® charts in Target Link and Linux
operating systems.

For more information about the back-to-model feature, see Identify Errors in Simulink
Models.

R2014a

8-12

https://www.mathworks.com/help/releases/R2014a/codeprover/ug/fixing-errors-in-simulink-model.html
https://www.mathworks.com/help/releases/R2014a/codeprover/ug/fixing-errors-in-simulink-model.html

R2013b

Version: 9.0

New Features

9

Verification Results

Proven absence of certain run-time errors in C and C++ code

Use Polyspace Code Prover to prove the absence of overflow, divide-by-zero, out-of-
bounds array access, and certain other run-time errors in source code. To verify code, the
software uses formal methods-based abstract interpretation techniques. The code
verification is static. It does not require program execution, code instrumentation, or test
cases. Before compilation and test, you can verify handwritten code, generated code, or a
combination of these two types of code.

Identification of variables exceeding specified range limits

By default, Polyspace Code Prover performs a robustness verification of your code. The
verification proves that the software works under all conditions. As the verification
assumes that all data inputs are set to their full range, almost any operation on these
inputs can produce an overflow.

To prove that your code works in normal conditions, use the Data Range Specification
(DRS) feature to perform contextual verification. You can set constraints on data ranges,
and verify your code within these ranges. The use of DRS can substantially reduce the
number of orange checks in verification results.

You can use DRS to set constraints on:

• Global variables
• Input parameters for user-defined functions called by the main generator
• Return values for stub functions

For a global variable, if you specify the globalassert mode, the software generates a
warning when the variable exceeds your specified range.

For more information, see Data Range Configuration.

Graphical display of variable reads and writes

A Polyspace Code Prover verification generates a data dictionary with information about
global variables and the read and write access operations on these variables. You can

R2013b

9-2

https://www.mathworks.com/help/releases/R2013b/codeprover/data-range-configuration.html

view this information through the Variable Access pane of the Results Manager
perspective.

For more information, see Exploring Results Manager Perspective.

Calculation of range information for variables, function parameters and
return values

Polyspace Code Prover calculates and displays range information associated with, for
example, variables, function parameters and return values, and operators. The displayed
range information represents a superset of dynamic values, which the software computes
using static methods.

For more information, see Interpret Results.

 Verification Results

9-3

https://www.mathworks.com/help/releases/R2013b/codeprover/ug/exploring-results-manager-perspective.html
https://www.mathworks.com/help/releases/R2013b/codeprover/results-understanding.html

Reviewing Results

Color-coding of run-time errors directly in code

Polyspace Code Prover uses color coding to indicate the status of code elements.

• Green — Proved to never have a run-time error.
• Red — Proved to always have a run-time error.
• Gray — Proved to be unreachable, which can indicate a functional issue.
• Orange — Unproven, and can have an error.

Errors detected include:

• Overflows, underflows, divide-by-zero, and other arithmetic errors
• Out-of-bounds array access and illegally dereferenced pointers
• Always true/false statement due to dataflow propagation
• Read access operation on uninitialized data
• Dead code
• Access to null this pointer (C++)
• Dynamic errors related to object programming, inheritance, and exception handling

(C++)
• Uninitialized class members (C++)
• Unsound type conversions

For more information, see Interpret Results.

Quality metrics for tracking conformance to software quality objectives

You can define a quality model with reference to coding rule violations, code complexity,
and run-time errors. By observing these metrics, you can track your progress toward
predefined software quality objectives as your code evolves from the first iteration to the
final version.

By confirming the absence of certain run-time errors and measuring the rate of
improvement in code quality, Polyspace Code Prover enables developers, testers, and
project managers to produce, assess, and deliver code that is free of run-time errors.

R2013b

9-4

https://www.mathworks.com/help/releases/R2013b/codeprover/results-understanding.html

For more information, see Quality Metrics.

Web-based dashboard providing code metrics and quality status
Polyspace Code Prover provides Polyspace Metrics, a Web-based dashboard for tracking
submitted verification jobs, reviewing progress, and viewing the quality status of your
code. Polyspace Metrics provides an integrated view of project metrics, displaying code
complexity, coding rule violations, run-time errors, and other code metrics.

For more information, see Quality Metrics.

Guided review-checking process for classifying results and run-time
error status
In the Results Manager perspective, Polyspace Code Prover provides you with several
options to organize your review process.

• You can use review methodologies to specify the number and type of checks displayed
on the Results Summary pane. With each methodology, you review only a subset of
checks.

For example, if you are reviewing verification results for the first time, select First
checks to review. The software displays all red and gray checks but only a subset of
orange checks. These orange checks are the ones most likely to be run-time errors.
For more information, see Review Checks Using Predefined Methodologies.

• You can group checks by File/Function or Check:

• Grouping by Check classifies checks by color. Within each color, this grouping
classifies checks by categories related to the origin of the check, such as Control
flow, Data flow, and Numerical.

• Grouping by File/Function classifies checks by the file where they originated.
Within each file, this grouping classifies checks by functions where they
originated.

• For C++ files, you can also group checks by Class. This grouping classifies checks
by the class definition where they originated.

For more information, see Organize Check Review Using Filters and Groups.
• You can filter checks using any of the column information criteria on the Results

Summary pane. For example, you can filter out checks that you have already

 Reviewing Results

9-5

https://www.mathworks.com/help/releases/R2013b/codeprover/index.html#quality-metrics
https://www.mathworks.com/help/releases/R2013b/codeprover/index.html#quality-metrics
https://www.mathworks.com/help/releases/R2013b/codeprover/ug/review-checks-using-predefined-methodologies.html
https://www.mathworks.com/help/releases/R2013b/codeprover/ug/filter-checks.html

justified using the filter icon on the Justified column header. If you have applied a
filter, the column heading changes to indicate that all results are not displayed. You
can also define custom filters. For more information, see Organize Check Review
Using Filters and Groups.

• You can navigate through the Results Summary pane using the keyboard or UI
buttons. Both means of navigation respect the grouping, filters, and methodology used
to display results.

Comparison with R2013a Polyspace products

Polyspace Code Prover is a single product that replaces the following R2013a products:

• Polyspace Client™ for C/C++
• Polyspace Server™ for C/C++

Polyspace Bug Finder, which is available with the Polyspace Code Prover, incorporates
the following R2013a products:

• Polyspace Model Link™ SL
• Polyspace Model Link TL
• Polyspace UML Link™ RH

For a summary of differences and similarities in remote verification, results review and
other features and options, expand the following:

R2013b

9-6

https://www.mathworks.com/help/releases/R2013b/codeprover/ug/filter-checks.html
https://www.mathworks.com/help/releases/R2013b/codeprover/ug/filter-checks.html

Remote verification
Category R2013a R2013b

Products required

Install:

• Polyspace Client for C/C++ on
local computer

• Polyspace Server for C/C++ on
network computers, which are
configured as Queue Manager and
CPUs.

Install:

• MATLAB, Polyspace Bug Finder,
and Parallel Computing Toolbox
on local computer.

• MATLAB, Polyspace Bug Finder,
Polyspace Code Prover, and
MATLAB Distributed Computing
Server on head node of computer
cluster. For information about
setting up a cluster, see Install
Products and Choose Cluster
Configuration.

Configuring and
starting services

On the Polyspace Preferences >
Server Configuration tab:

• Under Remote configuration,
specify host computer for Queue
Manager and Polyspace Metrics
server and communication port.

• Under Metrics configuration,
specify other settings for
Polyspace Metrics.

On the Polyspace Preferences >
Server Configuration tab:

• Under MDCS cluster
configuration, specify computer
for cluster head node, which hosts
the MATLAB job scheduler (MJS).
The MJS replaces the R2013a
Polyspace Queue Manager.

• Under Metrics configuration:

• Specify host computer for
Polyspace Metrics server and
communication port.

• Specify other settings for
Polyspace Metrics.

 Reviewing Results

9-7

https://www.mathworks.com/help/releases/R2013b/mdce/install-product-and-choose-cluster-configuration.html
https://www.mathworks.com/help/releases/R2013b/mdce/install-product-and-choose-cluster-configuration.html
https://www.mathworks.com/help/releases/R2013b/mdce/install-product-and-choose-cluster-configuration.html

Category R2013a R2013b
In the Remote Launcher Manager
dialog box:

1 Under Common Settings,
specify Polyspace communication
port, user details, and results
folder for remote verifications.

2 Under Queue Manager
Settings, specify Queue
Manager and CPUs.

3 Under Polyspace Server
Settings, specify available
Polyspace products.

4 To start the Queue Manager and
Polyspace Metrics service, click
Start Daemon.

In the Metrics and Remote Server
Settings dialog box:

1 Under Polyspace Metrics
Settings, specify user details,
Polyspace communication port,
and results folder for remote
verifications.

2 Under Polyspace MDCS
Cluster Security Settings, you
see the following options with
default values:

• Start the Polyspace MDCE
service — Selected. The
mdce service, which is
required to manage the MJS,
runs on the MJS host
computer and other nodes of
the cluster.

• MDCE service port —
27350.

• Use secure communication
– Not selected.
Communication is not
encrypted. You may want to
use communication with
security. For information
about MATLAB Distributed
Computing Server cluster
security, see Cluster Security.

3 To start the Polyspace Metrics
and mdce services, click Start
Daemon.

Use the Metrics and Remote Server
Settings dialog box to start and stop
mdce services only if you configure

R2013b

9-8

https://www.mathworks.com/help/releases/R2013b/mdce/mjs-security.html

Category R2013a R2013b
the MDCS head node as the
Polyspace Metrics server. Otherwise,
clear the Start the Polyspace
MDCE service check box, and use
the MDCS Admin Center. To open
the MDCS Admin Center, run:
matlabroot/toolbox/distcomp/bin/admincenter

For information about the MDCS
Admin Center, see Cluster Processes
and Profiles.

Running a remote
verification

In the Project Manager perspective:

1 On the Configuration >
Machine Configuration pane,
select the following check boxes:

• Send to Polyspace Server
• Add to results repository

— Allows viewing of results
through Polyspace Metrics.

2 On the toolbar, click Run.

The Polyspace client performs code
compilation and coding rule checking
on the local, host computer. Then the
Polyspace client submits the
verification to the Queue Manager on
your network.

In the Project Manager perspective:

1 On the Configuration >
Distributed Computing pane,
select the Batch check box. By
default, the software selects the
Add to results repository,
which enables the generation of
Polyspace Metrics.

2 On the toolbar, click Run.

The Polyspace Code Prover software
performs code compilation and coding
rule checking on the local, host
computer. Then the Parallel
Computing Toolbox client submits
the verification job to the MJS of the
MATLAB Distributed Computing
Server cluster.

 Reviewing Results

9-9

https://www.mathworks.com/help/releases/R2013b/mdce/cluster-administration.html
https://www.mathworks.com/help/releases/R2013b/mdce/cluster-administration.html

Category R2013a R2013b

Managing remote
verifications

Use the Queue Manager to monitor
and manage submitted jobs from
Polyspace clients.

On the Web, you can monitor jobs
through Polyspace Metrics. If you
have installed Polyspace Server for
C/C++ on your local computer,
through Polyspace Metrics, you can
open the Queue Manager .

Use the Queue Manager to monitor
and manage jobs submitted through
Parallel Computing Toolbox clients.

Accessing results of
remote verifications

When you run a verification on a
Polyspace server, the Polyspace
software automatically downloads the
results to your local, client computer.
You can view the results in the
Results Manager perspective.
In addition, you can use the Queue
Manager to download results of
verifications submitted from other
Polyspace clients.

On the Web, use Polyspace Metrics to
view verification results stored in
results repository. If Polyspace Client
for C/C++ is installed on your local
computer, you can download
verification results. For example, in
Polyspace Metrics, clicking a cell
value in the Run-Time Checks view
opens the corresponding verification
results in the Results Manager.

On the Web, use Polyspace Metrics to
view verification results. If Polyspace
Bug Finder is installed on your local
computer, you can download
verification results. For example, in
Polyspace Metrics, clicking a Project
cell in the Runs view opens the
corresponding verification results in
the Results Manager.

R2013b

9-10

Results review
Category R2013a R2013b
Results Explorer Available. Allows navigation

through checks by the file and
function where they occur. To
view, select Window > Show/
Hide View > Results
Explorer.

Removed. To navigate through
checks by file and function, on
Results Summary pane, from
the drop-down menu, select
File/Function.

Filters on the Results
Summary pane

Filters appear as icons on the
Results Summary pane. You
can filter by:

• Run-time error category
• Coding rules violated
• Check color
• Check justification
• Check classification
• Check status

You can filter by the
information in all the columns
of the Results Summary pane.
In addition to existing filters,
the new filtering capabilities
extend to the file, function and
line number where the checks
appear. You can also define
your own filters.

The filters appear as the
icon on each column header. To
apply a filter using the
information in a column:

1 Place your cursor on the
column header. The filter
icon appears.

2 Click the filter icon and
from the context menu,
clear the All box. Select the
appropriate boxes to see the
corresponding checks.

For more information, see
Organize Check Review Using
Filters and Groups.

 Reviewing Results

9-11

https://www.mathworks.com/help/releases/R2013b/codeprover/ug/filter-checks.html
https://www.mathworks.com/help/releases/R2013b/codeprover/ug/filter-checks.html

Category R2013a R2013b
Code Coverage Metrics In the Results Explorer view,

the software displays two
metrics for the project:

• unp — Number of
unreachable functions as a
ratio of total number of
functions

• cov — Percentage of
elementary operations
covered by verification

The unreachable procedures are
marked gray in the Results
Explorer view.

The new Results Statistics
pane displays the code coverage
metrics through the Code
covered by verification
column graph.

To see a list of unreachable
procedures, click this column
graph.

For more information, see
Results Statistics.

Other features
Product Feature R2013a R2013b

Polyspace Client and
Server for C/C++

Installation Separate installation
process for Polyspace
products

Polyspace Code Prover
software installed during
MATLAB installation
process.

Project configuration On host, for example,
using Polyspace Client
for C/C++ software.

On host, using Polyspace
Code Prover software.

Local verification On host, run Polyspace
Client for C/C++
verification.

Review results in
Results Manager.

On host, run Polyspace
Code Prover verification.

Review results in Results
Manager.

Export of review
comments to Excel,
and Excel report
generation

Supported Not supported.

R2013b

9-12

https://www.mathworks.com/help/releases/R2013b/codeprover/ug/exploring-results-manager-perspective.html#bt1btjh-1

Product Feature R2013a R2013b
Line command polyspace-c ...

polyspace-cpp ...

polyspace-code-
prover-nodesktop ...

Project configuration
file extension

project_name.cfg project_name.psprj

Results file
extension

results_name.rte results_name.pscp

Configuration >
Machine
Configuration
pane

Available Replaced by
Configuration >
Distributed Computing
pane.

Configuration >
Post Verification
pane

Available Renamed Configuration
> Advanced Settings

goto blocks Not supported Supported
Run verifications
from multiple
Polyspace
environments

Supported Not supported, produces a
license error -4,0.

Non-official
options field

Available in
Configuration >
Machine
Configuration pane

Renamed Other and
moved to Configuration
> Advanced Settings
pane

Polyspace Model Link
SL and TL

Default includes Includes specific to the
target specified.

Generic includes for C and
C++. These includes are
target independent.

 Reviewing Results

9-13

Product Feature R2013a R2013b
Running a
verification

Code > Polyspace >
Polyspace for
Embedded Coder/
Target Link

• Verify Generated
Code

• Verify Generated
Model Reference
Code

Also right-clicking on a
subsystem and selecting
Polyspace >
Polyspace for
Embedded Coder/
Target Link

Code > Polyspace >
Verify Code Generated
for

• Selected Subsystem
• Model
• Referenced Model
• Selected Target Link

Subsystem

Also right-clicking on a
subsystem and selecting
Polyspace > Verify
Code Generated for >
Selected Subsystem /
Selected Target Link
Subsystem

Product Mode Not available. Choose between Code
Prover or Bug Finder
depending on the type of
analysis you want to run.

Settings Available. Called
Verification Settings
from

Available. Called Settings
from. Functionality the
same.

Open results Option Open Project
Manager and Results
Manager opened the
Polyspace Project
Manager.

Option Open results
automatically after
verification opens
Polyspace Metrics (batch
verifications) or Polyspace
Results Manager (local
verifications).

R2013b

9-14

Product Feature R2013a R2013b
Polyspace plug-in for
Visual Studio 2010

Support for C++11
features

Partial support. Added support for:

• Lambda functions
• Rvalue references for

*this and
initialization of class
objects by rvalues

• Decltype
• Auto keyword for

multi-declarator auto
and trailing return
types

• Static assert
• Nullptr
• Extended friend

declarations
• Local and unnamed

types as template
arguments

Options
Product Option R2013a R2013b
 -code-metrics Available. Not selected

by default.
Removed. Code
complexity metrics
computed by default.

 -dialect Available. Default unchanged, but
new value gnu4.6
available for C and C+
+.

 Reviewing Results

9-15

Product Option R2013a R2013b

Polyspace Client and
Server for C/C++

-max-processes Specify through
Machine
Configuration >
Number of processes
for multiple CPU
core systems or
command line .

Specify from command
line, or through
Advanced Settings >
Other.

-allow-language-
extensions

Available. Selected by
default.

Removed. By default,
software supports
subset of common C
language constructs
and extended keywords
defined by the C99
standard or supported
by many compilers.

-enum-type-
definition

Available with three
values. First value
called defined-by-
standard.

Available with three
values.

For C, first value
renamed signed-int.

For C++, first value
renamed auto-
signed-int-first.

Polyspace Model Link
SL and TL

-scalar-overflows-
behavior wrap-
around

Available. Not selected
by default.

Default.

This option identifies
generated code from
blocks with saturation
enabled.

However, this option
might lead to a loss of
precision. For models
without saturation, you
can choose to remove
this option.

R2013b

9-16

Product Option R2013a R2013b
-ignore-constant-
overflows

Available. Not selected
by default.

Default.

 Reviewing Results

9-17

